Crossed modules, double group-groupoids and crossed squares
نویسندگان
چکیده
منابع مشابه
Crossed squares, crossed modules over groupoids and cat$^{bf {1-2}}-$groupoids
The aim of this paper is to introduce the notion of cat$^{bf {1}}-$groupoids which are the groupoid version of cat$^{bf {1}}-$groups and to prove the categorical equivalence between crossed modules over groupoids and cat$^{bf {1}}-$groupoids. In section 4 we introduce the notions of crossed squares over groupoids and of cat$^{bf {2}}-$groupoids, and then we show their categories are equivalent....
متن کاملCrossed Squares and 2-crossed Modules of Commutative Algebras
In this paper, we construct a neat description of the passage from crossed squares of commutative algebras to 2-crossed modules analogous to that given by Conduché in the group case. We also give an analogue, for commutative algebra, of T.Porter’s [13] simplicial groups to n-cubes of groups which implies an inverse functor to Conduché’s one.
متن کاملAutomorphisms and Homotopies of Groupoids and Crossed Modules
This paper is concerned with the algebraic structure of groupoids and crossed modules of groupoids. We describe the group structure of the automorphism group of a finite connected groupoid C as a quotient of a semidirect product. We pay particular attention to the conjugation automorphisms of C, and use these to define a new notion of groupoid action. We then show that the automorphism group of...
متن کاملHomotopies and Automorphisms of Crossed Modules of Groupoids
We give a detailed description of the structure of the actor 2-crossed module related to the automorphisms of a crossed module of groupoids. This generalises work of Brown and Gilbert for the case of crossed modules of groups, and part of this is needed for work on 2-dimensional holonomy to be developed elsewhere.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2020
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil2006755t