Crop yield prediction using multi-parametric deep neural networks
نویسندگان
چکیده
Objective: To propose Multi-parametric Deep Neural Network (MDNN) for modeling the impact of climate changes, multiple parameters related to weather and soil accurate crop yield prediction. Methods: In MDNN, a measure called Growing-Degree Day (GDD) is introduced measuring overall effect conditions yield. One key elements in MDNN neuron’s layer-wise activation function. order enhance predictive performance, leaky rectified linear unit used units MDNN. For analysis performance DNN data about weather, are collected from http://www.ccafs-climate.org/climatewizard/, https://data.world/thatzprem/agriculture-india https://data.gov.in/search/site?query=soil respectively. From data, 60000 records training 40,000 testing. Findings: By considering on yield, accuracy improved predicting The effectiveness tested compared with different types crops. achieves 91.84% mean five crops classification. Novelty: This proposed work tries predict more accurately by analyzing climate, parameters. considerably improves statistical efficiency over typical using previous knowledge important phenomena functional forms relating them Keywords: Crop prediction; machine learning; DNN; climatic changes; parameters; growing degree-day
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Multi-task Deep Neural Networks in Automated Protein Function Prediction
Background: In recent years, deep learning algorithms have outperformed the state-of-the art methods in several areas such as computer vision, speech recognition thanks to the efficient methods for training and for preventing overfitting, advancement in computer hardware and the availability of vast amount data. The high performance of multi-task deep neural networks in drug discovery has attra...
متن کاملMulti-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks
Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indian journal of science and technology
سال: 2021
ISSN: ['0974-5645', '0974-6846']
DOI: https://doi.org/10.17485/ijst/v14i2.2115