Critical points of nonconvex and noncoercive functionals
نویسندگان
چکیده
منابع مشابه
A bifurcation theorem for noncoercive integral functionals
In this paper we study the existence of critical points for noncoercive functionals, whose principal part has a degenerate coerciveness. A bifurcation result at zero for the associated differential operator is established.
متن کاملGenericity of Nondegenerate Critical Points and Morse Geodesic Functionals
We consider a family of variational problems on a Hilbert manifold parameterized by an open subset of a Banach manifold, and we discuss the genericity of the nondegeneracy condition for the critical points. Based on an idea of B. White [24], we prove an abstract genericity result that employs the infinite dimensional Sard–Smale theorem. Applications are given by proving the genericity of metric...
متن کاملSubharmonic solutions of a nonconvex noncoercive Hamiltonian system
In this paper we study the existence of subharmonic solutions of the Hamiltonian system Jẋ + u∗∇G(t, u(x)) = e(t) where u is a linear map, G is a C-function and e is a continuous function.
متن کاملExistence of Minimizers for Nonconvex, Noncoercive Simple Integrals
We consider the problem of minimizing autonomous, simple integrals like
متن کاملOn Critical Points of Functionals with Polyconvex Integrands
|f(x,A)| ≤ c(1 + |A|), for some c > 0 and 1 ≤ p < ∞, and u lies in the Sobolev space of vector-valued functions W 1,p(Ω,Rm). We study the implications of a function u0 being a critical point of F . In this regard we show among other things that if f does not depend on the spatial variable x, then every piecewise affine critical point of F is a global minimizer subject to its own boundary condit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Calculus of Variations
سال: 2004
ISSN: 0944-2669,1432-0835
DOI: 10.1007/s00526-004-0274-9