Critical points of Laplace eigenfunctions on polygons
نویسندگان
چکیده
We study the critical points of Laplace eigenfunctions on polygonal domains with a focus second Neumann eigenfunction. show that if each convex quadrilaterals has no eigenfunction an interior point, then there exists quadrilateral unstable point. also point second-Neumann Lip-1 polygon orthogonal sides is acute vertex.
منابع مشابه
Eigenfunctions of the Laplace operator
The study of the Laplace operator and its corresponding eigenvalue problem is crucial to understand the foundations of 3D shape analysis. For that reason the most important mathematical properties of the Laplace operator in Euclidean spaces, its eigenvalues and eigenfunctions are summarized and explained in this report. The basic definitions and concepts of infinite dimensional function spaces,...
متن کاملGeodesics and Nodal Sets of Laplace Eigenfunctions on Hyperbolic Manifolds
Let X be a manifold equipped with a complete Riemannian metric of constant negative curvature and finite volume. We demonstrate the finiteness of the collection of totally geodesic immersed hypersurfaces in X that lie in the zero-level set of an arbitrary Laplace eigenfunction. For surfaces, we show that the number can be bounded just in terms of the area of the surface. We also provide constru...
متن کاملHeat Kernel Smoothing Using Laplace-Beltrami Eigenfunctions
We present a novel surface smoothing framework using the Laplace-Beltrami eigenfunctions. The Green's function of an isotropic diffusion equation on a manifold is constructed as a linear combination of the Laplace-Beltraimi operator. The Green's function is then used in constructing heat kernel smoothing. Unlike many previous approaches, diffusion is analytically represented as a series expansi...
متن کاملQuasi-orthogonality on the boundary for Euclidean Laplace eigenfunctions
Consider the Laplacian in a bounded domain in Rd with general (mixed) homogeneous boundary conditions. We prove that its eigenfunctions are ‘quasi-orthogonal’ on the boundary with respect to a certain norm. Boundary orthogonality is proved asymptotically within a narrow eigenvalue window of width o(E1/2) centered about E, as E → ∞. For the special case of Dirichlet boundary conditions, the norm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Partial Differential Equations
سال: 2022
ISSN: ['1532-4133', '0360-5302']
DOI: https://doi.org/10.1080/03605302.2022.2062572