Critical points and level sets in exterior boundary problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exterior Boundary Value Problems as Limits of Interface Problems

It is proved that the solution to exterior Neumann boundary value problem can be obtained as the limit of the solutions of some problems in the whole space. 1 Consider the following problem: (V' + k*)u =f in f2, ul,=O, where f2 = R3\D. D is bounded domain with a smooth boundary r, fE C,(Q), k > 0. In [l] we proved the following: THEOREM 1. Consider the problem V=N in D N = const. > 0. =0 in Q, ...

متن کامل

Minimax Critical Points in Ginzburg-Landau Problems with Semi-stiff Boundary Conditions: Existence and Bubbling

LetΩ⊂R2 be a smooth bounded simply connected domain. We consider the simplified GinzburgLandau energy Eε(u) = 1 2 ˆ

متن کامل

Existence and Regularity of Higher Critical Points in Elliptic Free Boundary Problems

Existence and regularity of minimizers in elliptic free boundary problems have been extensively studied in the literature. We initiate the corresponding study of higher critical points by considering a superlinear free boundary problem related to plasma confinement. The associated energy functional is nondifferentiable, and therefore standard variational methods cannot be used directly to prove...

متن کامل

Exact Nonreflecting Boundary Conditions for Exterior Wave Equation Problems

We consider the classical wave equation problem defined on the exterior of a bounded 2D space domain, possibly having far field sources. We consider this problem in the time domain, but also in the frequency domain. For its solution we propose to associate with it a boundary integral equation (BIE) defined on an artificial boundary surrounding the region of interest. This boundary condition is ...

متن کامل

Solution of Exterior Problems using Elliptical Arc Artificial Boundary

In this paper, the artificial boundary method for Poisson problem in an infinite domain with a concave angle is investigated. The exact and approximate elliptical arc artificial boundary conditions are given. The finite element approximation is formulated in a bounded domain using the approximate artificial boundary condition and error estimates are obtained. Finally, some numerical examples sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indiana University Mathematics Journal

سال: 2009

ISSN: 0022-2518

DOI: 10.1512/iumj.2009.58.3648