منابع مشابه
Wedge filling , cone filling and the strong - fluctuation regime
Interfacial fluctuation effects occuring at wedge and cone filling transitions are investigated and shown to exhibit very different characteristics. For both geometries we show how the conditions for observing critical (continuous) filling are much less restrictive than for critical wetting, which is known to require fine tuning of the Hamaker constants. Wedge filling is critical if the wetting...
متن کاملTricritical Wedge Filling Transitions with Short-ranged Forces
We show that the 3D wedge filling transition in the presence of shortranged interactions can be first-order or second order depending on the strength of the line tension associated with to the wedge bottom. This fact implies the existence of a tricritical point characterized by a short-distance expansion which differs from the usual continuous filling transition. Our analysis is based on an eff...
متن کاملWedge covariance for 2 D filling and wetting
A comprehensive theory of interfacial fluctuation effects occurring at 2D wedge (corner) filling transitions in pure (thermal disorder) and impure (random bond-disorder) systems is presented. Scaling theory and the explicit results of transfer matrix and replica trick studies of interfacial Hamiltonian models reveal that, for almost all examples of intermolecular forces, the critical behaviour ...
متن کاملThree-dimensional wedge filling in ordered and disordered systems
We investigate interfacial structural and fluctuation effects occurring at continuous filling transitions in 3D wedge geometries. We show that fluctuation-induced wedge covariance relations that have been reported recently for 2D filling and wetting have mean-field or classical analogues that apply to higher-dimensional systems. Classical wedge covariance emerges from analysis of filling in sha...
متن کاملCritical wetting in power - law wedge geometries
We investigate critical wetting transitions for fluids adsorbed in wedge-like geometries where the substrate height varies as a power-law, z(x, y) ∼ |x| γ , in one direction. As γ is increased from 0 to 1 the substrate shape is smoothly changed from a planar-wall to a linear wedge. The continuous wetting and filling transitions pertinent to these limiting geometries are known to have distinct p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2013
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.110.166101