Critical Exponents of Quasilinear Parabolic Equations
نویسندگان
چکیده
منابع مشابه
Quasilinear Elliptic Equations with Critical Exponents
has no solution if Ω ⊂ R , N ≥ 3, is bounded and starshaped with respect to some point, and 2∗ = 2N/(N − 2). In (P0) the nonlinear term is a power of u with the critical exponent (N + 2)/(N − 2). This terminology comes from the fact that the continuous Sobolev imbeddings H 0 (Ω) ⊂ L(Ω), for p ≤ 2∗ and Ω bounded, are also compact except when p = 2∗. This loss of compactness reflects in that the ...
متن کاملQuasilinear Schrödinger equations involving critical exponents in $mathbb{textbf{R}}^2$
We study the existence of soliton solutions for a class of quasilinear elliptic equation in $mathbb{textbf{R}}^2$ with critical exponential growth. This model has been proposed in the self-channeling of a high-power ultra short laser in matter.
متن کاملON QUASILINEAR ELLIPTIC SYSTEMS INVOLVING MULTIPLE CRITICAL EXPONENTS
In this paper, we consider the existence of a non-trivial weaksolution to a quasilinear elliptic system involving critical Hardyexponents. The main issue of the paper is to understand thebehavior of these Palais-Smale sequences. Indeed, the principaldifficulty here is that there is an asymptotic competition betweenthe energy functional carried by the critical nonlinearities. Thenby the variatio...
متن کاملQuasilinear Parabolic Functional Evolution Equations
Based on our recent work on quasilinear parabolic evolution equations and maximal regularity we prove a general result for quasilinear evolution equations with memory. It is then applied to the study of quasilinear parabolic differential equations in weak settings. We prove that they generate Lipschitz semiflows on natural history spaces. The new feature is that delays can occur in the highest ...
متن کاملStability of Solutions of Quasilinear Parabolic Equations
Abstract. We bound the difference between solutions u and v of ut = a∆u+ divx f + h and vt = b∆v + divx g + k with initial data φ and ψ, respectively, by ‖u(t, ·)− v(t, ·)‖Lp(E) ≤ AE(t)‖φ−ψ‖ 2ρp L∞(Rn) +B(t)(‖a− b‖∞ + ‖∇x · f − ∇x · g‖∞ + ‖fu − gu‖∞ + ‖h− k‖∞)p |E| ηp . Here all functions a, f , and h are smooth and bounded, and may depend on u, x ∈ R, and t. The functions a and h may in additi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2002
ISSN: 0022-247X
DOI: 10.1006/jmaa.2001.7771