Critical curves for fast diffusion equations coupled via nonlinear boundary flux
نویسندگان
چکیده
منابع مشابه
Critical parameter equations for degenerate parabolic equations coupled via nonlinear boundary flux
* Correspondence: [email protected] Department of Mathematics, Jiangxi Vocational College of Finance and Economics, Jiujiang, Jiangxi, 332000, PR China Abstract This paper deals with the critical parameter equations for a degenerate parabolic system coupled via nonlinear boundary flux. By constructing the self-similar supersolution and subsolution, we obtain the critical global existence pa...
متن کاملBlowup for a Non-Newtonian Polytropic Filtration System Coupled via Nonlinear Boundary Flux
We study the global existence and the global nonexistence of a non-Newtonian polytropic filtration system coupled via nonlinear boundary flux. We first establish a weak comparison principle, then discuss the large time behavior of solutions by using modified upper and lower solution methods and constructing various upper and lower solutions. Necessary and sufficient conditions on the global exi...
متن کاملLyapunov functionals for boundary-driven nonlinear drift–diffusion equations
We exhibit a large class of Lyapunov functionals for nonlinear drift–diffusion equations with non-homogeneous Dirichlet boundary conditions. These are generalizations of large deviation functionals for underlying stochastic manyparticle systems, the zero-range process and the Ginzburg–Landau dynamics, which we describe briefly. We prove, as an application, linear inequalities between such an en...
متن کاملThe existence results for a coupled system of nonlinear fractional differential equations with multi-point boundary conditions
In this paper, we study a coupled system of nonlinear fractional differential equations with multi-point boundary condi- tions. The differential operator is taken in the Riemann-Liouville sense. Applying the Schauder fixed-point theorem and the contrac- tion mapping principle, two existence results are obtained for the following system D^{alpha}_{0+}x(t)=fleft(t,y(t),D^{p}_{0+}y(t)right), t in (0,...
متن کاملExtinction for Fast Diffusion Equations with Nonlinear Sources
We establish conditions for the extinction of solutions, in finite time, of the fast diffusion problem ut = ∆um +λup, 0 < m < 1, in a bounded domain of RN with N > 2. More precisely, we show that if p > m, the solution with small initial data vanishes in finite time, and if p < m, the maximal solution is positive for all t > 0. If p = m, then first eigenvalue of the Dirichlet problem plays a role.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2015
ISSN: 1029-242X
DOI: 10.1186/s13660-015-0695-3