منابع مشابه
Face Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کامل3D Face Recognition using Patch Geodesic Derivative Pattern
In this paper, a novel Patch Geodesic Derivative Pattern (PGDP) describing the texture map of a face through its shape data is proposed. Geodesic adjusted textures are encoded into derivative patterns for similarity measurement between two 3D images with different pose and expression variations. An extensive experimental investigation is conducted using the publicly available Bosphorus and BU-3...
متن کاملFace Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملFace Recognition Using Parzenfaces
A novel discriminant analysis method is presented for the face recognition problem. It has been recently shown that the predictive objectives based on Parzen estimation are advantageous for learning discriminative projections if the class distributions are complicated in the projected space. However, the existing algorithms based on Parzen estimators require expensive computation to obtain the ...
متن کاملFace Recognition Using K2DSPCA
Face recognition is one of biometric methods, to identify given face image using main features of face. In this paper, a neural based algorithm is presented, to detect frontal views of faces. The dimensionality of face image is reduced by the Kernel based 2 dimensional symmetrical principal component analysis (K2DSPCA) and the recognition is done by the Back propagation Neural Network (BPNN). H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Volume 5 - 2020, Issue 6 - June
سال: 2020
ISSN: 2456-2165
DOI: 10.38124/ijisrt20jun1116