Covering-space-like algebras

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tense like equality algebras

In this paper, first we define the notion of involutive operator on bounded involutive equality algebras and by using it, we introduce a new class of equality algebras that we called it a tense like equality algebra. Then we investigate some properties of tense like equality algebra. For two involutive bounded equality algebras and an equality homomorphism between them, we prove that the tense ...

متن کامل

Covering and gluing of algebras and differential algebras

Extending work of Budzyński and Kondracki, we investigate coverings and gluings of algebras and differential algebras. We describe in detail the gluing of two quantum discs along their classical subspace, giving a C∗-algebra isomorphic to a certain Podleś sphere, as well as the gluing of U q1/2(sl2)-covariant differential calculi on the discs. 1991 MSC: 81R50, 46L87

متن کامل

Space Constrained Dynamic Covering

In this paper, we identify a fundamental algorithmic problem that we term space-constrained dynamic covering (SCDC), arising in many modern-day web applications, including ad-serving and online recommendation systems in eBay and Netflix. Roughly speaking, SCDC applies two restrictions to the well-studied Max-Coverage problem [9]: Given an integer k, X = {1, 2, . . . , n} and I = {S1, . . . , Sm...

متن کامل

Primitive Ideal Space of Ultragraph $C^*$-algebras

In this paper, we describe the primitive ideal space of the $C^*$-algebra $C^*(mathcal G)$  associated to the ultragraph $mathcal{G}$. We investigate the structure of the closed ideals of the quotient ultragraph $  C^* $-algebra  $C^*left(mathcal G/(H,S)right)$ which contain no nonzero set projections and then we characterize all non gauge-invariant primitive ideals. Our results generalize the ...

متن کامل

Covering Dimension for Nuclear C * -algebras

We introduce the completely positive rank, a notion of covering dimension for nuclear C *-algebras and analyze some of its properties. The completely positive rank behaves nicely with respect to direct sums, quotients, ideals and inductive limits. For abelian C *-algebras it coincides with covering dimension of the spectrum and there are similar results for continuous trace algebras. As it turn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1969

ISSN: 0021-8693

DOI: 10.1016/0021-8693(69)90077-5