Covariate adjusted functional principal components analysis for longitudinal data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Persian Handwriting Analysis Using Functional Principal Components

Principal components analysis is a well-known statistical method in dealing with large dependent data sets. It is also used in functional data for both purposes of data reduction as well as variation representation. On the other hand "handwriting" is one of the objects, studied in various statistical fields like pattern recognition and shape analysis. Considering time as the argument,...

متن کامل

Interference and noise-adjusted principal components analysis

The goal of principal components analysis (PCA) is to find principal components in accordance with maximum variance of a data matrix. However, it has been shown recently that such variance-based principal components may not adequately represent image quality. As a result, a modified PCA approach based on maximization of SNR was proposed. Called maximum noise fraction (MNF) transformation or noi...

متن کامل

Functional Principal Component Analysis for Longitudinal and Survival Data

This paper proposes a nonparametric approach for jointly modelling longitudinal and survival data using functional principal components. The proposed model is data-adaptive in the sense that it does not require pre-specified functional forms for longitudinal trajectories and it automatically detects characteristic patterns. The longitudinal trajectories observed with measurement error are repre...

متن کامل

Bayesian functional principal components analysis for binary and count data

Recently, van der Linde (2008) proposed a variational algorithm to obtain approximate Bayesian inference in functional principal components analysis (FPCA), where the functions were observed with Gaussian noise. Generalized FPCA under different noise models with sparse longitudinal data was developed by Hall, Müller and Yao (2008), but no Bayesian approach is available yet. It is demonstrated t...

متن کامل

Functional Analysis of Iranian Temperature and Precipitation by Using Functional Principal Components Analysis

Extended Abstract. When data are in the form of continuous functions, they may challenge classical methods of data analysis based on arguments in finite dimensional spaces, and therefore need theoretical justification. Infinite dimensionality of spaces that data belong to, leads to major statistical methodologies and new insights for analyzing them, which is called functional data analysis (FDA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 2010

ISSN: 0090-5364

DOI: 10.1214/09-aos742