منابع مشابه
Covariance Regularization by Thresholding
This paper considers regularizing a covariance matrix of p variables estimated from n observations, by hard thresholding. We show that the thresholded estimate is consistent in the operator norm as long as the true covariance matrix is sparse in a suitable sense, the variables are Gaussian or sub-Gaussian, and (log p)/n→ 0, and obtain explicit rates. The results are uniform over families of cov...
متن کاملQuantitative covariance NMR by regularization.
The square root of a covariance spectrum, which offers high spectral resolution along both dimensions requiring only few t (1) increments, yields in good approximation the idealized 2D FT spectrum provided that the amount of magnetization exchanged between spins is relatively small. When this condition is violated, 2D FT and covariance peak volumes may differ. A regularization method is present...
متن کاملSparse PCA via Covariance Thresholding
In sparse principal component analysis we are given noisy observations of a low-rank matrix of dimension n × p and seek to reconstruct it under additional sparsity assumptions. In particular, we assume here each of the principal components v1, . . . ,vr has at most s0 non-zero entries. We are particularly interested in the high dimensional regime wherein p is comparable to, or even much larger ...
متن کاملLarge Covariance Estimation by Thresholding Principal Orthogonal Complements.
This paper deals with the estimation of a high-dimensional covariance with a conditional sparsity structure and fast-diverging eigenvalues. By assuming sparse error covariance matrix in an approximate factor model, we allow for the presence of some cross-sectional correlation even after taking out common but unobservable factors. We introduce the Principal Orthogonal complEment Thresholding (PO...
متن کاملITERATIVE THRESHOLDING ALGORITHM FOR SPARSE INVERSE COVARIANCE ESTIMATION By
The `1-regularized maximum likelihood estimation problem has recently become a topic of great interest within the machine learning, statistics, and optimization communities as a method for producing sparse inverse covariance estimators. In this paper, a proximal gradient method (G-ISTA) for performing `1-regularized covariance matrix estimation is presented. Although numerous algorithms have be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 2008
ISSN: 0090-5364
DOI: 10.1214/08-aos600