Courant-sharp eigenvalues of compact flat surfaces: Klein bottles and cylinders

نویسندگان

چکیده

The question of determining for which eigenvalues there exists an eigenfunction has the same number nodal domains as label associated eigenvalue (Courant-sharp property) was motivated by analysis minimal spectral partitions. In previous works, many examples have been analyzed corresponding to squares, rectangles, disks, triangles, tori, M\"obius strips,\ldots . A natural toy model further investigations is flat Klein bottle, a non-orientable surface with Euler characteristic $0$, and particularly bottle square torus, whose higher multiplicities. this note, we prove that only Courant-sharp torus (resp. fundamental domain) are first second eigenvalues. We also consider cylinders $(0,\pi) \times \mathbb{S}^1_r$ where $r \in \{0.5,1\}$ radius circle $\mathbb{S}^1_r$, show Dirichlet these

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From Klein Bottles to Modular Super-Bottles

A modular approach is presented for the construction of 2-manifolds of higher genus, corresponding to the connected sum of multiple Klein bottles. The geometry of the classical Klein bottle is employed to construct abstract geometrical sculptures with some aesthetic qualities. Depending on how the modular components are combined to form these “Super-Bottles” the resulting surfaces may be single...

متن کامل

Sharp Bounds for Eigenvalues and Multiplicities on Surfaces of Revolution

For surfaces of revolution diffeomorphic to S, it is proved that (S, can) provides sharp upper bounds for the multiplicities of all of the distinct eigenvalues. We also find sharp upper bounds for all the distinct eigenvalues and show that an infinite sequence of these eigenvalues are bounded above by those of (S, can). An example of such bounds for a metric with some negative curvature is pres...

متن کامل

Klein Bottles and Simple Currents

The standard Klein bottle coefficient in the construction of open descendants is shown to equal the Frobenius-Schur indicator of a conformal field theory. Other consistent Klein bottle projections are shown to correspond to simple currents. These observations enable us to generalize the standard open string construction from C-diagonal parent theories to include non-standard Klein bottles. Usin...

متن کامل

Flat Spacetimes with Compact Hyperbolic Cauchy Surfaces

We study the flat (n+1)-spacetimes Y admitting a Cauchy surface diffeomorphic to a compact hyperbolic n-manifold M . Roughly speaking, we show how to construct a canonical future complete one, Yρ, among all such spacetimes sharing a same holonomy ρ. We study the geometry of Yρ in terms of its canonical cosmological time (CT). In particular we study the asymptotic behaviour of the level surfaces...

متن کامل

Sharp Symplectic Embeddings of Cylinders

We show that the cylinder Z(1) := B(1) × R2(n−1) embeds symplectically into B(R)× R2(n−2) if R > √ 3.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2021

ISSN: ['2330-1511']

DOI: https://doi.org/10.1090/proc/15620