Cost-Effective Active Learning for Deep Image Classification

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Cost-Effective Active Learning for Melanoma Segmentation

We propose a novel Active Learning framework capable to train effectively a convolutional neural network for semantic segmentation of medical imaging, with a limited amount of training labeled data. Our contribution is a practical CostEffective Active Learning approach using dropout at test time as Monte Carlo sampling to model the pixel-wise uncertainty and to analyze the image information to ...

متن کامل

Active Learning for Cost-Sensitive Classification

We design an active learning algorithm for cost-sensitive multiclass classification: problems where different errors have different costs. Our algorithm, COAL, makes predictions by regressing to each label’s cost and predicting the smallest. On a new example, it uses a set of regressors that perform well on past data to estimate possible costs for each label. It queries only the labels that cou...

متن کامل

Active Learning for Cost-Sensitive Classification

i,y with features x and label y. The computation of this sensitivity value is governed by the actual online update where we compute the derivative of the change in the prediction as a function of the importance weight w for a hypothetical example with cost 0 or cost 1 and the same features. This is possible for essentially all online update rules on importance weighted examples and it correspon...

متن کامل

Active Learning with Ensembles for Image Classification

In many real-world tasks of image classification, limited amounts of labeled data are available to train automatic classifiers. Consequently, extensive human expert involvement is required for verification. A novel solution is presented that makes use of active learning combined with an ensemble of classifiers for each class. The result is a significant reduction in required expert involvement ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Circuits and Systems for Video Technology

سال: 2017

ISSN: 1051-8215,1558-2205

DOI: 10.1109/tcsvt.2016.2589879