Cosmetic surgery in L–space homology spheres

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cosmetic surgery in L–space homology spheres

In particular, let K be a framed knot in a closed oriented three-manifold Y . For a rational number r , let Yr .K/ be the manifold obtained by Dehn surgery along K with slope r . Two surgeries along K with distinct slopes r and r 0 are called equivalent if there exists an orientation-preserving homeomorphism of the complement of K taking one slope to the other; and they are called truly cosmeti...

متن کامل

Homology lens spaces and Dehn surgery on homology spheres

A homology lens space is a closed 3-manifold with Z-homology groups isomorphic to those of a lens space. A useful theorem found in [Fu] states that a homology lens space M3 may be obtained by an (n/1)-Dehn surgery on a homology 3-sphere if and only if the linking form of M3 is equivalent to (1/n). In this note we generalize this result to cover all homology lens spaces, and in the process offer...

متن کامل

Suspensions of homology spheres

This article is one of three highly influential articles on the topology of manifolds written by Robert D. Edwards in the 1970’s but never published. This article “Suspensions of homology spheres” presents the initial solutions of the fabled Double Suspension Conjecture. The article “Approximating certain cell-like maps by homeomorphisms” presents the definitive theorem on the recognition of ma...

متن کامل

Thoroughly Knotted Homology Spheres

For H n a homology n-sphere, consider the problem of classifying locally flat imbeddings H n•'-• S n+2 up to isotopy. Since any imbedding may be altered by adding knots S n• S n+2, the classification problem is at least as complex as the isotopy classification of knots. Elsewhere [8] we show that there is a natural correspondence between k ot heory and the classification of those imbeddings H n...

متن کامل

Rational Homology 7-Spheres

In this paper we demonstrate the existence of Sasakian-Einstein structures on certain 2-connected rational homology 7-spheres. These appear to be the first non-regular examples of Sasakian-Einstein metrics on simply connected rational homology spheres. We also briefly describe the rational homology 7-spheres that admit regular positive Sasakian structures.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometry & Topology

سال: 2011

ISSN: 1364-0380,1465-3060

DOI: 10.2140/gt.2011.15.1157