Coseparable Hopf algebras

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Baxter Algebras and Hopf Algebras

George E. Andrews Department of Mathematics Pennsylvania State University University Park, PA 16802, USA ([email protected]) Li Guo Department of Mathematics and Computer Science Rutgers University at Newark Newark, NJ 07102, USA ([email protected]) William Keigher Department of Mathematics and Computer Science Rutgers University at Newark Newark, NJ 07102, USA ([email protected]...

متن کامل

Braided Hopf Algebras Obtained from Coquasitriangular Hopf Algebras

Let (H, σ) be a coquasitriangular Hopf algebra, not necessarily finite dimensional. Following methods of Doi and Takeuchi, which parallel the constructions of Radford in the case of finite dimensional quasitriangular Hopf algebras, we define Hσ , a sub-Hopf algebra of H, the finite dual of H. Using the generalized quantum double construction and the theory of Hopf algebras with a projection, we...

متن کامل

Cohomology of Hopf C-algebras and Hopf von Neumann algebras

We will define two canonical cohomology theories for Hopf C∗-algebras and for Hopf von Neumann algebras (with coefficients in their comodules). We will then study the situations when these cohomologies vanish. The cases of locally compact groups and compact quantum groups will be considered in more details. 1991 AMS Mathematics Classification number: Primary: 46L55, 46L05; Secondary: 43A07, 22D25

متن کامل

NOTES ON REGULAR MULTIPLIER HOPF ALGEBRAS

In this paper, we associate canonically a precyclic mod- ule to a regular multiplier Hopf algebra endowed with a group-like projection and a modular pair in involution satisfying certain con- dition

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 1973

ISSN: 0022-4049

DOI: 10.1016/0022-4049(73)90013-3