Corrigendum to the paper “Equivalence of the existence of best proximity points and best proximity pairs for cyclic and noncyclic nonexpansive mappings”

نویسندگان

چکیده

Abstract The purpose of this short note is to present a correction the proof main result given in paper “ Equivalence existence best proximity points and pairs for cyclic noncyclic nonexpansive mappings ,” Demonstr. Math. 53 (2020), 38–43.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On best proximity points for multivalued cyclic $F$-contraction mappings

In this paper, we establish and prove the existence of best proximity points for multivalued cyclic $F$- contraction mappings in complete metric spaces. Our results improve and extend various results in literature.

متن کامل

Coincidence Quasi-Best Proximity Points for Quasi-Cyclic-Noncyclic Mappings in Convex Metric Spaces

We introduce the notion of quasi-cyclic-noncyclic pair and its relevant new notion of coincidence quasi-best proximity points in a convex metric space. In this way we generalize the notion of coincidence-best proximity point already introduced by M. Gabeleh et al cite{Gabeleh}. It turns out that under some circumstances this new class of mappings contains the class of cyclic-noncyclic mappings ...

متن کامل

Existence Results of best Proximity Pairs for a Certain Class of Noncyclic Mappings in Nonreflexive Banach Spaces Polynomials 

Introduction Let  be a nonempty subset of a normed linear space . A self-mapping  is said to be nonexpansive provided that  for all . In 1965, Browder showed that every nonexpansive self-mapping defined on a nonempty, bounded, closed and convex subset of a uniformly convex Banach space , has a fixed point. In the same year, Kirk generalized this existence result by using a geometric notion of ...

متن کامل

Some results on convergence and existence of best proximity points

In this paper, we introduce generalized cyclic φ-contraction maps in metric spaces and give some results of best proximity points of such mappings in the setting of a uniformly convex Banach space. Moreover, we obtain convergence and existence results of proximity points of the mappings on reflexive Banach spaces

متن کامل

Best proximity points of cyclic mappings

Given A and B two subsets of a metric space, a mapping T : A∪B → A∪B is said to be cyclic if T (A) ⊆ B and T (B) ⊆ A. It is known that, if A and B are nonempty and complete and the cyclic map verifies for some k ∈ (0, 1) that d(Tx, Ty) ≤ kd(x, y) ∀ x ∈ A and y ∈ B, then A∩B 6= ∅ and the mapping T has a unique fixed point. A generalization of this situation was studied under the assumption of A ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Demonstratio Mathematica

سال: 2021

ISSN: ['0420-1213', '2391-4661']

DOI: https://doi.org/10.1515/dema-2021-0007