Correspondence between spirallike functions and starlike functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Norm Estimates of Pre-Schwarzian Derivatives of Spirallike Functions and Uniformly Convex $alpha$-spirallike Functions

For a constant $alphain left(-frac{pi}{2},frac{pi}{2}right)$,  we definea  subclass of the spirallike functions, $SP_{p}(alpha)$, the setof all functions $fin mathcal{A}$[releft{e^{-ialpha}frac{zf'(z)}{f(z)}right}geqleft|frac{zf'(z)}{f(z)}-1right|.]In  the present paper, we shall give the estimate of the norm of the pre-Schwarzian derivative  $mathrm{T}...

متن کامل

Angle distortion theorems for starlike and spirallike functions with respect to a boundary point

It is clear that 0∈ h(Δ). Moreover, (i) if 0 ∈ h(Δ), then h is called spirallike (resp., starlike) with respect to an interior point; (ii) if 0 ∈ h(Δ), then h is called spirallike (resp., starlike) with respect to a boundary point. In this case, there is a boundary point (say, z = 1) such that h(1) := ∠ limz→1h(z)= 0 (see, e.g., [1, 6]); by symbol∠ lim, we denote the angular (nontangential) lim...

متن کامل

On Uniformly Starlike Functions

These are normalized functions regular and univalent in E: IzI < 1, for which f( E) is starlike with respect to the origin. Let y be a circle contained in E and let [ be the center of y. The Pinchuk question is this: Iff(z) is in ST, is it true thatf(y) is a closed curve that is starlike with respect tof(i)? In Section 5 we will see that the answer is no. There seems to be no reason to demand t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Nachrichten

سال: 2011

ISSN: 0025-584X

DOI: 10.1002/mana.201010020