Correspondence between spirallike functions and starlike functions
نویسندگان
چکیده
منابع مشابه
The Norm Estimates of Pre-Schwarzian Derivatives of Spirallike Functions and Uniformly Convex $alpha$-spirallike Functions
For a constant $alphain left(-frac{pi}{2},frac{pi}{2}right)$, we definea subclass of the spirallike functions, $SP_{p}(alpha)$, the setof all functions $fin mathcal{A}$[releft{e^{-ialpha}frac{zf'(z)}{f(z)}right}geqleft|frac{zf'(z)}{f(z)}-1right|.]In the present paper, we shall give the estimate of the norm of the pre-Schwarzian derivative $mathrm{T}...
متن کاملAngle distortion theorems for starlike and spirallike functions with respect to a boundary point
It is clear that 0∈ h(Δ). Moreover, (i) if 0 ∈ h(Δ), then h is called spirallike (resp., starlike) with respect to an interior point; (ii) if 0 ∈ h(Δ), then h is called spirallike (resp., starlike) with respect to a boundary point. In this case, there is a boundary point (say, z = 1) such that h(1) := ∠ limz→1h(z)= 0 (see, e.g., [1, 6]); by symbol∠ lim, we denote the angular (nontangential) lim...
متن کاملOn Uniformly Starlike Functions
These are normalized functions regular and univalent in E: IzI < 1, for which f( E) is starlike with respect to the origin. Let y be a circle contained in E and let [ be the center of y. The Pinchuk question is this: Iff(z) is in ST, is it true thatf(y) is a closed curve that is starlike with respect tof(i)? In Section 5 we will see that the answer is no. There seems to be no reason to demand t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Nachrichten
سال: 2011
ISSN: 0025-584X
DOI: 10.1002/mana.201010020