Correctly Rounded Arbitrary-Precision Floating-Point Summation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithms for arbitrary precision floating point arithmetic

We present techniques which may be used to perform computations of very high accuracy using only straightforward oating point arithmetic operations of limited precision, and we prove the validity of these techniques under very general hypotheses satissed by most implementations of oating point arithmetic. To illustrate the application of these techniques, we present an algorithm which computes ...

متن کامل

Accurate floating point summation∗

We present and analyze several simple algorithms for accurately summing n floating point numbers S = ∑n i=1 si, independent of how much cancellation occurs in the sum. Let f be the number of significant bits in the si. We assume a register is available with F > f significant bits. Then assuming that (1) n ≤ b2F−f/(1 − 2−f )c + 1, (2) rounding is to nearest, (3) no overflow occurs, and (4) all u...

متن کامل

Accurate Floating - Point Summation ∗

Given a vector of floating-point numbers with exact sum s, we present an algorithm for calculating a faithful rounding of s into the set of floating-point numbers, i.e. one of the immediate floating-point neighbors of s. If the s is a floating-point number, we prove that this is the result of our algorithm. The algorithm adapts to the condition number of the sum, i.e. it is very fast for mildly...

متن کامل

On Floating-Point Summation

In this paper we focus on some general error analysis results in floating-point summation. We emphasize analysis useful from both a scientific and a teaching point of view.

متن کامل

Supplementary material to “ Accelerating Correctly Rounded Floating - Point Division When the Divisor is Known in Advance ”

• If m > n, the exact quotient of two n-bit numbers cannot be an m-bit number. • Let x, y ∈ Mn. x = y ⇒ |x/y − 1| ≥ 2−n. We call a breakpoint a value z where the rounding changes, that is, if t1 and t2 are real numbers satisfying t1 < z < t2 and ◦t is the rounding mode, then ◦t(t1) < ◦t(t2). For “directed” rounding modes (i.e., towards +∞, −∞ or 0), the breakpoints are the FP numbers. For round...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Computers

سال: 2017

ISSN: 0018-9340

DOI: 10.1109/tc.2017.2690632