Correction to: SimDCL: dropout-based simple graph contrastive learning for recommendation
نویسندگان
چکیده
منابع مشابه
Graph-based Analysis for E-Commerce Recommendation
Recommender systems automate the process of recommending products and services to customers based on various types of data including customer demographics, product features, and, most importantly, previous interactions between customers and products (e.g., purchasing, rating, and catalog browsing). Despite significant research progress and growing acceptance in real-world applications, two majo...
متن کاملGraph based Recommendation for Distributed Systems
A huge amount of information available through electronically, the requirement for effective information retrieval and the implementation of filtering tools have become more necessary for easy retrieval of relevant information. Recommendation Systems (RS) are the software tools and methods providing recommendation for items as well as services to be of need to a user. These systems are providin...
متن کاملTrust-Based Recommendation Based on Graph Similarity
Trust networks are directed weighted graphs whose nodes represent agents and edges represent trust between agents. This paper proposes a trust-based recommendation approach, which can recommend trustworthy agents to a requester in a trust network. We consider a good recommendation as one to an agent that the requester’s trusted neighbors trust highly. We relate the recommendation problem to the...
متن کاملContrastive Learning for Image Captioning
Image captioning, a popular topic in computer vision, has achieved substantial progress in recent years. However, the distinctiveness of natural descriptions is often overlooked in previous work. It is closely related to the quality of captions, as distinctive captions are more likely to describe images with their unique aspects. In this work, we propose a new learning method, Contrastive Learn...
متن کاملA Neighbourhood-Based Stopping Criterion for Contrastive Divergence Learning
Restricted Boltzmann Machines (RBMs) are general unsupervised learning devices to ascertain generative models of data distributions. RBMs are often trained using the Contrastive Divergence learning algorithm (CD), an approximation to the gradient of the data log-likelihood. A simple reconstruction error is often used as a stopping criterion for CD, although several authors [1], [2] have raised ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Complex & Intelligent Systems
سال: 2023
ISSN: ['2198-6053', '2199-4536']
DOI: https://doi.org/10.1007/s40747-023-01051-1