Correction to: On $${\mathbb {Z}}_{2}{\mathbb {Z}}_{4}[\xi ]$$-skew cyclic codes
نویسندگان
چکیده
منابع مشابه
Skew cyclic codes over $\mathbb{F}_{q}+v\mathbb{F}_{q}+v^{2}\mathbb{F}_{q}$
In this article, we study skew cyclic codes over ring R = Fq + vFq + v 2 Fq, where q = p, p is an odd prime and v3 = v. We describe generator polynomials of skew cyclic codes over this ring and investigate the structural properties of skew cyclic codes over R by a decomposition theorem. We also describe the generator polynomials of the duals of skew cyclic codes. Moreover, the idempotent genera...
متن کاملSkew cyclic codes over $\mathbb{F}_{p}+u\mathbb{F}_{p}$
In this paper, we study skew cyclic codes with arbitrary length over the ring $R=\mathbb{F}_{p}+u\mathbb{F}_{p}$ where $p$ is an odd prime and $% u^{2}=0$. We characterize all skew cyclic codes of length $n$ as left $% R[x;\theta ]$-submodules of $R_{n}=R[x;\theta ]/\langle x^{n}-1\rangle $. We find all generator polynomials for these codes and describe their minimal spanning sets. Moreover, an...
متن کاملOn Skew Cyclic Codes over a Finite Ring
In this paper, we classify the skew cyclic codes over Fp + vF_p + v^2F_p, where p is a prime number and v^3 = v. Each skew cyclic code is a F_p+vF_p+v^2F_p-submodule of the (F_p+vF_p+v^2F_p)[x;alpha], where v^3 = v and alpha(v) = -v. Also, we give an explicit forms for the generator of these codes. Moreover, an algorithm of encoding and decoding for these codes is presented.
متن کامل$\mathbb{Z}_{q}(\mathbb{Z}_{q}+u\mathbb{Z}_{q})$-Linear Skew Constacyclic Codes
In this paper, we study skew constacyclic codes over the ring ZqR where R = Zq + uZq, q = p s for a prime p and u2 = 0. We give the definition of these codes as subsets of the ring ZqR . Some structural properties of the skew polynomial ring R[x, θ] are discussed, where θ is an automorphism of R. We describe the generator polynomials of skew constacyclic codes over R and ZqR. Using Gray images ...
متن کاملCyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$
In this paper, we have studied cyclic codes over the ring R = Z4 +uZ4, u = 0. We have considered cyclic codes of odd lengths. A sufficient condition for a cyclic code over R to be a Z4-free module is presented. We have provided the general form of the generators of a cyclic code over R and determined a formula for the ranks of such codes. In this paper we have mainly focused on principally gene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics and Computing
سال: 2021
ISSN: ['1865-2085', '1598-5865']
DOI: https://doi.org/10.1007/s12190-021-01595-w