Correction to: Boundary Integral Formula for Harmonic Functions on Riemann Surfaces
نویسندگان
چکیده
We present a corrected proof of Proposition 2.3 in the article “Boundary integral formula for harmonic functions on Riemann surfaces” [2].
منابع مشابه
Harmonic morphisms onto Riemann surfaces and generalized analytic functions
© Annales de l’institut Fourier, 1987, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier...
متن کاملMeromorphic Functions on Certain Riemann Surfaces
1. Throughout the paper we shall denote by R a Riemann surface. For a domain Í2 in P, we represent by AB(Q) the class of all the singlevalued bounded analytic functions on the closure Ü. For a meromorphic function / on a domain ß, we use the notation viw\f, Q.) to express the number of times that/ attains w in ß. Definition 1. We say that REWIb if the maximum principle suplen \fip)\ =sup3,ean \...
متن کاملHarmonic maps from degenerating Riemann surfaces
We study harmonic maps from degenerating Riemann surfaces with uniformly bounded energy and show the so-called generalized energy identity. We find conditions that are both necessary and sufficient for the compactness in W 1,2 and C modulo bubbles of sequences of such maps. 2000 Mathematics Subject Classification: 58E20
متن کاملAn Integral Riemann-roch Formula for Flat Line Bundles
Let p be a unitary representation of the subgroup K of the finite group 0, with inclusion map / . Then, if /, and /# denote the transfer maps for representation theory and cohomology respectively, Knopfmacher [8] has proved that, for all k ^ 1, there exist positive integers Mk such that Mk(k\chk(fiP))=U(Mkk\ohk(P)). Here ch& denotes the fcth component of the Chern character, so that k! chfc is ...
متن کاملFlat connections, geometric invariants and energy of harmonic functions on compact Riemann surfaces
This work grew out of an attempt to generalize the construction of Chern-Simons invariants. In this paper, we associate a geometric invariant to the space of flat connection on a SU(2)-bundle on a compact Riemann surface and relate it to the energy of harmonic functions on the surface. Our set up is as follows. Let G = SU(2) and M be a compact Riemann surface and E ~ M be the trivial G-bundle. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Methods and Function Theory
سال: 2021
ISSN: ['2195-3724', '1617-9447']
DOI: https://doi.org/10.1007/s40315-021-00418-0