Correction to: Analysis of dengue model with fractal-fractional Caputo–Fabrizio operator
نویسندگان
چکیده
A Correction to this paper has been published: 10.1186/s13662-020-03199-3
منابع مشابه
Fractal and Fractional
Fractal and Fractional are two words referring to some characteristics and fundamental problems which arise in all fields of science and technology. These problems are characterized by having some non-integer order features. Fractals are geometrical objects with non-integer dimension, while fractional is the non-integer order of differential operators. Fractals and fractional calculus have been...
متن کاملAnalysis of Fractal Operator Convergence by Graph Methods
The convergence of fractal operator F used in image compression is investigated by analysis of block innuence graph and pixel innuence graph. The graph stability condition in block innuence graph implies eventual contractivity condition which is suucient for the operator iteration convergence. The graph stability condition in pixel innuence graph appears to be suucient and necessary for converg...
متن کاملOn a subclass of multivalent analytic functions associated with an extended fractional differintegral operator
Making use of an extended fractional differintegral operator ( introduced recently by Patel and Mishra), we introduce a new subclass of multivalent analytic functions and investigate certain interesting properties of this subclass.
متن کاملAnalysis of the advection-diffusion operator using fractional order norms
In this paper we obtain a family of optimal estimates for the linear advection-diffusion operator. More precisely we define norms on the domain of the operator, and norms on its image, such that it behaves as an isomorphism: it stays bounded as well as its inverse does, uniformly with respect to the diffusion parameter. The analysis makes use of the interpolation theory between function spaces....
متن کاملOn Generalization of Sturm-Liouville Theory for Fractional Bessel Operator
In this paper, we give the spectral theory for eigenvalues and eigenfunctions of a boundary value problem consisting of the linear fractional Bessel operator. Moreover, we show that this operator is self-adjoint, the eigenvalues of the problem are real, and the corresponding eigenfunctions are orthogonal. In this paper, we give the spectral theory for eigenvalues and eigenfunctions...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2021
ISSN: ['1687-1839', '1687-1847']
DOI: https://doi.org/10.1186/s13662-020-03199-3