Correction: Adjustment by Minimum Discriminant Information
نویسندگان
چکیده
منابع مشابه
Dimension Reduction by Mutual Information Discriminant Analysis
In the past few decades, researchers have proposed many discriminant analysis (DA) algorithms for the study of high-dimensional data in a variety of problems. Most DA algorithms for feature extraction are based on transformations that simultaneously maximize the between-class scatter and minimize the withinclass scatter matrices. This paper presents a novel DA algorithm for feature extraction u...
متن کاملAdaptive Language Modeling Using Minimum Discriminant Estimation
We present an algorithm to adapt a n-gram language model to a document as it is dictated. The observed partial document is used to estimate a unigram distribution for the words that already occurred. Then, we find the closest n-gram distribution to the static n.gram distribution (using the discrimination information distance measure) and that satisfies the marginal constraints derived from the ...
متن کاملMinimum Distance Error Correction
A method is presented for incorporating error correction using a minimum distance measure into LR parsers. The method is suitable for use by an automatic parser-generator. State information in the LR parser stack at the point of detection of error is used to generate a set of strings which are potential repairs to the input. A string with least minimum distance from the actual input is chosen a...
متن کاملMinimum-entropy phase adjustment for ISAR
A new technique is developed for phase adjustment in ISAR imaging. The adjustment phase is found by iteratively solving an equation, which is derived by minimising the entropy of the image. This technique can be used to estimate adjustment phases of any form. Moreover, the optimisation method used in this technique is computationally more efficient than trial-and-error methods.
متن کاملFace Recognition by Cognitive Discriminant Features
Face recognition is still an active pattern analysis topic. Faces have already been treated as objects or textures, but human face recognition system takes a different approach in face recognition. People refer to faces by their most discriminant features. People usually describe faces in sentences like ``She's snub-nosed'' or ``he's got long nose'' or ``he's got round eyes'' and so like. These...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 1986
ISSN: 0090-5364
DOI: 10.1214/aos/1176349863