Coronal fast ignition by laser: relativistic critical density increase and constraints on maximum laser wavelength
نویسندگان
چکیده
منابع مشابه
Relativistic laser channeling in plasmas for fast ignition.
We report an experimental observation suggesting plasma channel formation by focusing a relativistic laser pulse into a long-scale-length preformed plasma. The channel direction coincides with the laser axis. Laser light transmittance measurement indicates laser channeling into the high-density plasma with relativistic self-focusing. A three-dimensional particle-in-cell simulation reproduces th...
متن کاملFast ignition of fusion targets by laser-driven electrons
We present hybrid PIC simulations of fast electron transport and energy deposition in pre-compressed fusion targets, taking full account of collective magnetic effects and the hydrodynamic response of the background plasma. Results on actual ignition of an imploded fast ignition configuration are shown accounting for the increased beam divergence found in recent experiments [J.S. Green et al., ...
متن کاملVisualizing fast electron energy transport into laser-compressed high-density fast-ignition targets
Recent progress in kilojoule-scale high-intensity lasers has opened up new areas of research in radiography, laboratory astrophysics, high-energy-density physics, and fast-ignition (FI) laser fusion. FI requires e cient heating of pre-compressed high-density fuel by an intense relativistic electron beam produced from laser–matter interaction. Understanding the details of electron beam generatio...
متن کاملRelativistic increase of critical electron density
Original quasineutrality of a plasma at rest is heavily perturbed when the electrons are induced to oscillate relativistically by a superintense laser beam. This represents one of the major difficulties when studying the propagation of intense linearly polarized electromagnetic waves in plasmas. Particular attention has to be dedicated to the effective relativistic increase of the critical dens...
متن کاملComposite Cavity Fiber Laser with Asymmetric Output Intensity and Wavelength
The composite cavity fiber laser (CCFL) is relatively simple in its fabrication, as it is essentially three wavelength matched Bragg gratings in a section of doped fiber. By using internal feedback with unequal sub-cavity lengths, unidirectional CCFLs with significantly asymmetric output power from its two outputs can be achieved. Preliminary results also show that it is possible for the lasing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2008
ISSN: 1742-6596
DOI: 10.1088/1742-6596/112/2/022074