Coordinate Descent Full Configuration Interaction
نویسندگان
چکیده
منابع مشابه
Penalized Bregman Divergence Estimation via Coordinate Descent
Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...
متن کاملRank-Restricted Full Configuration Interaction
which is a linear combination of n-electron configurations, or determinants, with coefficients equal to c!. The components |Φ! form an orthonormal basis of the wavefunction. The determinants are the set of features that comprise the wavefunction, so we can optimize them by minimizing the electronic energy. To determine the energy of the wavefunction c, the Schrödinger equation in matrix form reads
متن کاملWhen Cyclic Coordinate Descent Outperforms Randomized Coordinate Descent
Coordinate descent (CD) method is a classical optimization algorithm that has seen a revival of interest because of its competitive performance in machine learning applications. A number of recent papers provided convergence rate estimates for their deterministic (cyclic) and randomized variants that differ in the selection of update coordinates. These estimates suggest randomized coordinate de...
متن کاملCoordinate descent algorithms
Coordinate descent algorithms solve optimization problems by successively performing approximate minimization along coordinate directions or coordinate hyperplanes. They have been used in applications for many years, and their popularity continues to grow because of their usefulness in data analysis, machine learning, and other areas of current interest. This paper describes the fundamentals of...
متن کاملRobust Block Coordinate Descent
In this paper we present a novel randomized block coordinate descent method for the minimization of a convex composite objective function. The method uses (approximate) partial second-order (curvature) information, so that the algorithm performance is more robust when applied to highly nonseparable or ill conditioned problems. We call the method Robust Coordinate Descent (RCD). At each iteratio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Chemical Theory and Computation
سال: 2019
ISSN: 1549-9618,1549-9626
DOI: 10.1021/acs.jctc.9b00138