Convolutional Sparse Coding for Compressed Sensing CT Reconstruction
نویسندگان
چکیده
منابع مشابه
Compressed Sensing Dynamic MRI Reconstruction Using GPU-accelerated 3D Convolutional Sparse Coding
In this paper, we introduce a fast alternating method for reconstructing highly undersampled dynamic MRI data using 3D convolutional sparse coding. The proposed solution leverages Fourier Convolution Theorem to accelerate the process of learning a set of 3D filters and iteratively refine the MRI reconstruction based on the sparse codes found subsequently. In contrast to conventional CS methods ...
متن کاملCOMPRESSED SENSINg AND SPARSE RECONSTRuCTION IN MPI
The reconstruction of a particle concentration in Magnetic Particle Imaging (MPI) usually involves the solution of a linear system of equations [1]. The acquisition and storage of the system matrix is challenging in practice: The acquisition time is proportional to the discretisation of the field of view (FOV). Assuming optimistic conditions, the system matrix acquisition lasts about two days f...
متن کاملAccelerated Compressed Sensing Based CT Image Reconstruction
In X-ray computed tomography (CT) an important objective is to reduce the radiation dose without significantly degrading the image quality. Compressed sensing (CS) enables the radiation dose to be reduced by producing diagnostic images from a limited number of projections. However, conventional CS-based algorithms are computationally intensive and time-consuming. We propose a new algorithm that...
متن کاملImproved Compressed Sensing-Based Algorithm for Sparse-View CT Image Reconstruction
In computed tomography (CT), there are many situations where reconstruction has to be performed with sparse-view data. In sparse-view CT imaging, strong streak artifacts may appear in conventionally reconstructed images due to limited sampling rate that compromises image quality. Compressed sensing (CS) algorithm has shown potential to accurately recover images from highly undersampled data. In...
متن کاملImproved compressed sensing algorithm for sparse-view CT
In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Medical Imaging
سال: 2019
ISSN: 0278-0062,1558-254X
DOI: 10.1109/tmi.2019.2906853