Convolution structures for an Orlicz space with respect to vector measures on a compact group
نویسندگان
چکیده
The aim of this paper is to present some results about the space $L^{\varPhi }(\nu ),$ where $\nu$ a vector measure on compact (not necessarily abelian) group and $\varPhi$ Young function. We show that under natural conditions, )$ becomes an $L^{1}(G)$ -module with respect usual convolution functions. also define one more structure ).$
منابع مشابه
a comparison of teachers and supervisors, with respect to teacher efficacy and reflection
supervisors play an undeniable role in training teachers, before starting their professional experience by preparing them, at the initial years of their teaching by checking their work within the proper framework, and later on during their teaching by assessing their progress. but surprisingly, exploring their attributes, professional demands, and qualifications has remained a neglected theme i...
15 صفحه اولCompact Composition Operator on Weighted Bergman-Orlicz Space
In this paper we study the weighted Bergman-Orlicz spaces Aα. Among other properties we get that Aα is a Banach space with the Luxemburg norm. We show that the set of analytic polynomials is dense in Aα. We also study compactness and continuity of the composition operator on Aα. Mathematics Subject Classification: 46E30, 47B33
متن کاملOn Some Vector Valued Sequence Space Using Orlicz Function
In this paper, we introduce some new sequence space using Orlicz function and study some properties of this space.
متن کاملOn the Universal Space for Group Actions with Compact Isotropy
LetG be a locally compact topological group and EG its universal space for the family of compact subgroups. We give criteria for this space to be G-homotopy equivalent to a d-dimensional G-CW -complex, a finite G-CW -complex or a G-CW -complex of finite type. Essentially we reduce these questions to discrete groups, and to the homological algebra of the orbit category of discrete groups with re...
متن کاملRisk Measures on Orlicz Hearts
Coherent, convex and monetary risk measures were introduced in a setup where uncertain outcomes are modelled by bounded random variables. In this paper, we study such risk measures on Orlicz hearts. This includes coherent, convex and monetary risk measures on L-spaces for 1 ≤ p < ∞ and covers a wide range of interesting examples. Moreover, it allows for an elegant duality theory. We prove that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society
سال: 2021
ISSN: ['1464-3839', '0013-0915']
DOI: https://doi.org/10.1017/s0013091521000018