Convexity via Weak Distributive Laws

نویسندگان

چکیده

We study the canonical weak distributive law $\delta$ of powerset monad over semimodule for a certain class semirings containing, in particular, positive semifields. For this subclass we characterise as convex closure free set. Using abstract theory laws, compose and monads via $\delta$, obtaining subsets semimodule.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak distributive laws

Distributive laws between monads (triples) were defined by Jon Beck in the 1960s; see [1]. They were generalized to monads in 2-categories and noticed to be monads in a 2-category of monads; see [2]. Mixed distributive laws are comonads in the 2-category of monads [3]; if the comonad has a right adjoint monad, the mate of a mixed distributive law is an ordinary distributive law. Particular case...

متن کامل

Polycategories via pseudo-distributive laws

In this paper, we give a novel abstract description of Szabo’s polycategories. We use the theory of double clubs – a generalisation of Kelly’s theory of clubs to ‘pseudo’ (or ‘weak’) double categories – to construct a pseudo-distributive law of the free symmetric strict monoidal category pseudocomonad onMod over itself qua pseudomonad, and show that monads in the ‘two-sided Kleisli bicategory’ ...

متن کامل

Presenting Distributive Laws

Distributive laws of a monad T over a functor F are categorical tools for specifying algebra-coalgebra interaction. They proved to be important for solving systems of corecursive equations, for the specification of well-behaved structural operational semantics and, more recently, also for enhancements of the bisimulation proof method. If T is a free monad, then such distributive laws correspond...

متن کامل

Pseudo-distributive laws

We address the question of how elegantly to combine a number of different structures, such as finite product structure, monoidal structure, and colimiting structure, on a category. Extending work of Marmolejo and Lack, we develop the definition of a pseudo-distributive law between pseudo-monads, and we show how the definition and the main theorems about it may be used to model several such stru...

متن کامل

Iterated distributive laws

We give a framework for combining n monads on the same category via distributive laws satisfying Yang-Baxter equations, extending the classical result of Barr and Wells which combines two monads via one distributive law. We show that this corresponds to iterating n-times the process of taking the 2-category of monads in a 2-category, extending the result of Street characterising distributive la...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Logical Methods in Computer Science

سال: 2022

ISSN: ['1860-5974']

DOI: https://doi.org/10.46298/lmcs-18(4:8)2022