Convexification for data fitting

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convexification Schemes for Sqp Methods

Sequential quadratic programming (SQP) methods solve nonlinear optimization problems by finding an approximate solution of a sequence of quadratic programming (QP) subproblems. Each subproblem involves the minimization of a quadratic model of the objective function subject to the linearized constraints. Depending on the definition of the quadratic model, the QP subproblem may be nonconvex, lead...

متن کامل

Successive Convexification for Consistent Labeling

In this thesis, a novel successive convexification scheme is proposed for solving consistent labeling problems with convex regularization terms. Many computer vision problems can be modeled as such consistent labeling problems. The main optimization term, the labeling cost, however, is typically non-convex, which makes the problem difficult. As well, the large search space, i.e., formally the l...

متن کامل

Convexification of Unstructured Grids

Unstructured tetrahedral grids are a common data representation of three-dimensional scalar fields. For convex unstructured meshes efficient rendering methods are known. For concave or cyclic meshes, however, a significant overhead is required to sort the grid cells in back to front order. In this paper we apply methods known from computational geometry to transform concave into convex grids. W...

متن کامل

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

Convexification and Deconvexification for Training Neural Networks

This paper presents a new method of training neural networks including deep learning machines, which is based on the idea of convexifying the training error criterion by the use of the risk-averting error (RAE) criterion. Convexification creates tunnels between the depressed regions around saddle points, tilts the plateaus, and eliminates nonglobal local minima. The difficulties in computing th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Global Optimization

سال: 2009

ISSN: 0925-5001,1573-2916

DOI: 10.1007/s10898-009-9417-z