Convex hypersurfaces with prescribed Gauss-Kronecker curvature

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of Convex Hypersurfaces with Prescribed Gauss-kronecker Curvature

Let f(x) be a given positive function in Rn+1. In this paper we consider the existence of convex, closed hypersurfaces X so that its GaussKronecker curvature at x ∈ X is equal to f(x). This problem has variational structure and the existence of stable solutions has been discussed by Tso (J. Diff. Geom. 34 (1991), 389–410). Using the Mountain Pass Lemma and the Gauss curvature flow we prove the ...

متن کامل

Hypersurfaces of Prescribed Gauss Curvature in Exterior Domains

We prove an existence theorem for convex hypersurfaces of prescribed Gauß curvature in the complement of a compact set in Euclidean space which are close to a cone.

متن کامل

Entire spacelike hypersurfaces of prescribed Gauss curvature in Minkowski space

which gives an isometric embedding of the hyperbolic space H into R. Hano and Nomizu [11] were probably the first to observe the non-uniqueness of isometric embeddings of H in R by constructing other (geometrically distinct) entire solutions of (1.1)–(1.2) for n 1⁄4 2 (and c1 1) using methods of ordinary di¤erential equations. Using the theory of Monge-Ampère equations, A.-M. Li [12] studied en...

متن کامل

Hypersurfaces of Prescribed Curvature Measure

We consider the corresponding Christoffel-Minkowski problem for curvature measures. The existence of star-shaped (n − k)-convex bodies with prescribed k-th curvature measures (k > 0) has been a longstanding problem. This is settled in this paper through the establishment of a crucial C a priori estimate for the corresponding curvature equation on S.

متن کامل

Convex hypersurfaces of prescribed curvatures

For a smooth strictly convex closed hypersurface Σ in R, the Gauss map n : Σ → S is a diffeomorphism. A fundamental question in classical differential geometry concerns how much one can recover through the inverse Gauss map when some information is prescribed on S ([27]). This question has attracted much attention for more than a hundred years. The most notable example is probably the Minkowski...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Geometry

سال: 1991

ISSN: 0022-040X

DOI: 10.4310/jdg/1214447213