Convex Computation of the Maximum Controlled Invariant Set For Polynomial Control Systems
نویسندگان
چکیده
منابع مشابه
Convex Computation of the Maximum Controlled Invariant Set For Polynomial Control Systems
We characterize the maximum controlled invariant (MCI) set for discreteas well as continuous-time nonlinear dynamical systems as the solution of an infinitedimensional linear programming problem. For systems with polynomial dynamics and compact semialgebraic state and control constraints, we describe a hierarchy of finite-dimensional linear matrix inequality (LMI) relaxations whose optimal valu...
متن کاملThe Maximal Controlled Invariant Set of Switched Linear Systems
We study the construction of the maximal controlled invariant set of switched linear systems. We consider two cases, based on whether fast switches are allowed or not. For both cases, iterative algorithms are given to construct such sets.
متن کاملcontrol of the optical properties of nanoparticles by laser fields
در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...
15 صفحه اولComputation on Zagreb Polynomial of Some Families of Dendrimers
In mathematical chemistry, a particular attention is given to degree-based graph invariant. The Zagrebpolynomial is one of the degree based polynomials considered in chemical graph theory. A dendrimer isan artificially manufactured or synthesized molecule built up from branched units called monomers. Inthis note, the first, second and third Zagreb poly...
متن کاملInvariant varieties for polynomial dynamical systems
We study algebraic dynamical systems (and, more generally, σ-varieties) Φ : AC → AC given by coordinatewise univariate polynomials by refining an old theorem of Ritt on compositional identities amongst polynomials. More precisely, we find a nearly canonical way to write a polynomial as a composition of “clusters” from which one may easily read off possible compositional identities. Our main res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Control and Optimization
سال: 2014
ISSN: 0363-0129,1095-7138
DOI: 10.1137/130914565