Convex ancient solutions of the mean curvature flow
نویسندگان
چکیده
منابع مشابه
Crystalline mean curvature flow of convex sets
We prove a local existence and uniqueness result of crystalline mean curvature flow starting from a compact convex admissible set in R . This theorem can handle the facet breaking/bending phenomena, and can be generalized to any anisotropic mean curvature flow. The method provides also a generalized geometric evolution starting from any compact convex set, existing up to the extinction time, sa...
متن کاملMean Curvature Flow with Convex Gauss Image
We study the mean curvature flow of complete space-like submanifolds in pseudo-Euclidean space with bounded Gauss image, as well as that of complete submanifolds in Euclidean space with convex Gauss image. By using the confinable property of the Gauss image under the mean curvature flow we prove the long time existence results in both cases. We also study the asymptotic behavior of these soluti...
متن کاملSingularity Structure in Mean Curvature Flow of Mean Convex Sets
In this note we announce results on the mean curvature flow of mean convex sets in 3-dimensions. Loosely speaking, our results justify the naive picture of mean curvature flow where the only singularities are neck pinches, and components which collapse to asymptotically round spheres. In this note we announce results on the mean curvature flow of mean convex sets; all the statements below have ...
متن کاملNon-collapsing in Mean-convex Mean Curvature Flow
We provide a direct proof of a non-collapsing estimate for compact hypersurfaces with positive mean curvature moving under the mean curvature flow: Precisely, if every point on the initial hypersurface admits an interior sphere with radius inversely proportional to the mean curvature at that point, then this remains true for all positive times in the interval of existence. We follow [4] in defi...
متن کاملTranslating Solutions to Lagrangian Mean Curvature Flow
We prove some non-existence theorems for translating solutions to Lagrangian mean curvature flow. More precisely, we show that translating solutions with an L bound on the mean curvature are planes and that almost-calibrated translating solutions which are static are also planes. Recent work of D. Joyce, Y.-I. Lee, and M.-P. Tsui, shows that these conditions are optimal.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Geometry
سال: 2015
ISSN: 0022-040X
DOI: 10.4310/jdg/1442364652