Convergence theorems for three finite families of multivalued nonexpansive mappings
نویسندگان
چکیده
منابع مشابه
Convergence theorems for generalized nonexpansive multivalued mappings in hyperbolic spaces
In this paper, we establish the existence of a fixed point for generalized nonexpansive multivalued mappings in hyperbolic spaces and we prove some [Formula: see text]-convergence and strong convergence theorems for the iterative scheme proposed by Chang et al. (Appl Math Comp 249:535-540, 2014) to approximate a fixed point for generalized nonexpansive multivalued mapping under suitable conditi...
متن کاملStrong Convergence Theorems for a Finite Family of Nonexpansive Mappings
Let H be a real Hilbert space, C a nonempty closed convex subset of H , and T : C → C a mapping. Recall that T is nonexpansive if ‖Tx−Ty‖ ≤ ‖x− y‖ for all x, y ∈ C. A point x ∈ C is called a fixed point of T provided Tx = x. Denote by F(T) the set of fixed points of T , that is, F(T) = {x ∈ C : Tx = x}. Recall that a self-mapping f : C → C is a contraction on C, if there exists a constant α∈ (0...
متن کاملConvergece Theorems for Finite Families of Asymptotically Quasi-Nonexpansive Mappings
Let E be a real Banach space, K a closed convex nonempty subset of E, and T1,T2, . . . ,Tm : K → K asymptotically quasi-nonexpansive mappings with sequences (resp.) {kin}n=1 satisfying kin → 1 as n → ∞, and ∑∞ n=1(kin − 1) < ∞, i = 1,2, . . . ,m. Let {αn}n=1 be a sequence in [ , 1− ], ∈ (0,1). Define a sequence {xn} by x1 ∈ K , xn+1 = (1− αn)xn + αnT n 1 yn+m−2, yn+m−2 = (1− αn)xn + αnT 2 yn+m−...
متن کاملConvergence Theorems for -Nonexpansive Mappings in CAT(0) Spaces
In this paper we derive convergence theorems for an -nonexpansive mappingof a nonempty closed and convex subset of a complete CAT(0) space for SP-iterative process and Thianwan's iterative process.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Egyptian Mathematical Society
سال: 2014
ISSN: 1110-256X
DOI: 10.1016/j.joems.2013.10.008