Convergence rate for a large deviation probability

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Convergence Rate of the Law of Large Numbers for Sums of Dependent Random Variables

In this paper, we generalize some results of Chandra and Goswami [4] for pairwise negatively dependent random variables (henceforth r.v.’s). Furthermore, we give Baum and Katz’s [1] type results on estimate for the rate of convergence in these laws.

متن کامل

Bennett-type Generalization Bounds: Large-deviation Case and Faster Rate of Convergence

In this paper, we present the Bennett-type generalization bounds of the learning process for i.i.d. samples, and then show that the generalization bounds have a faster rate of convergence than the traditional results. In particular, we first develop two types of Bennett-type deviation inequality for the i.i.d. learning process: one provides the generalization bounds based on the uniform entropy...

متن کامل

Large deviation probability and local density of sets

Let X 1 ; X 2 ; : : : ; X n be n independent identically distributed real random variables and S n := n X i=1 X i. We obtain precise asymptotics for P(S n 2 n A) for rather arbitrary Borel sets A, in terms of the density of the dominating points in A. Our result extends classical theorems in the eld of large deviations for independent samples. We also obtain asymptotics for P(S n 2 n A), with n...

متن کامل

Small Deviation Probability via Chaining

We obtain several extensions of Talagrand’s lower bound for the small deviation probability using metric entropy. For Gaussian processes, our investigations are focused on processes with sub-polynomial and, respectively, exponential behaviour of covering numbers. The corresponding results are also proved for non-Gaussian symmetric stable processes, both for the cases of critically small and cri...

متن کامل

A large deviation principle for Dirichlet posteriors

Let Xk be a sequence of independent and identically distributed random variables taking values in a compact metric space Ω, and consider the problem of estimating the law of X1 in a Bayesian framework. A conjugate family of priors for non-parametric Bayesian inference is the Dirichlet process priors popularized by Ferguson. We prove that if the prior distribution is Dirichlet, then the sequence...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1974

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1974-0345174-0