Convergence of Online Gradient Method for Pi-sigma Neural Networks with Inner-penalty Terms

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of Online Gradient Method for Pi-sigma Neural Networks with Inner-penalty Terms

This paper investigates an online gradient method with innerpenalty for a novel feed forward network it is called pi-sigma network. This network utilizes product cells as the output units to indirectly incorporate the capabilities of higherorder networks while using a fewer number of weights and processing units. Penalty term methods have been widely used to improve the generalization performan...

متن کامل

Convergence of Online Gradient Method with a Penalty Term for Feedforward Neural Networks with Stochastic

Abstract Online gradient algorithm has been widely used as a learning algorithm for feedforward neural network training. In this paper, we prove a weak convergence theorem of an online gradient algorithm with a penalty term, assuming that the training examples are input in a stochastic way. The monotonicity of the error function in the iteration and the boundedness of the weight are both guaran...

متن کامل

Convergence of online gradient method for feedforward neural networks with smoothing L1/2 regularization penalty

Minimization of the training regularization term has been recognized as an important objective for sparse modeling and generalization in feedforward neural networks. Most of the studies so far have been focused on the popular L2 regularization penalty. In this paper, we consider the convergence of online gradient method with smoothing L1/2 regularization term. For normal L1/2 regularization, th...

متن کامل

Convergence of an Online Gradient Algorithm with Penalty for Two-layer Neural Networks

Online gradient algorithm has been widely used as a learning algorithm for feedforward neural networks training. Penalty is a common and popular method for improving the generalization performance of networks. In this paper, a convergence theorem is proved for the online gradient learning algorithm with penalty, a term proportional to the magnitude of the weights. The monotonicity of the error ...

متن کامل

Training Pi-Sigma Network by Online Gradient Algorithm with Penalty for Small Weight Update

A pi-sigma network is a class of feedforward neural networks with product units in the output layer. An online gradient algorithm is the simplest and most often used training method for feedforward neural networks. But there arises a problem when the online gradient algorithm is used for pi-sigma networks in that the update increment of the weights may become very small, especially early in tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: American Journal of Neural Networks and Applications

سال: 2016

ISSN: 2469-7400

DOI: 10.11648/j.ajnna.20160201.11