Convergence in distribution of products of d × d random matrices
نویسندگان
چکیده
منابع مشابه
Products of I.I.D. Random Nonnegative Matrices: Their Skeletons and Convergence in Distribution
Under mild conditions, it is shown that if X1, X2, . . . , is a sequence of d by d random nonnegative i.i.d. matrices, then the convergence in distribution of products X1X2 · · ·Xn essentially depends on the skeletons of X1. (Two d by d nonnegative matrices have the same skeleton if their positive entries appear on identical positions.) AMS (2000) subject classification. 60B15, 60B10, 20M20, 15...
متن کاملRow Products of Random Matrices
Let ∆1, . . . ,∆K be d × n matrices. We define the row product of these matrices as a d × n matrix, whose rows are entry-wise products of rows of ∆1, . . . ,∆K . This construction arises in certain computer science problems. We study the question, to which extent the spectral and geometric properties of the row product of independent random matrices resemble those properties for a d × n matrix ...
متن کاملthe investigation of research articles in applied linguistics: convergence and divergence in iranian elt context
چکیده ندارد.
Products of Random Rectangular Matrices
We study the asymptotic behaviour of points under matrix cocyles generated by rectangular matrices. In particular we prove a random Perron-Frobenius and a Multiplicative Ergodic Theorem. We also provide an example where such products of random rectangular matrices arise in the theory of random walks in random environments and where the Multiplicative Ergodic Theorem can be used to investigate r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1991
ISSN: 0022-247X
DOI: 10.1016/0022-247x(91)90179-4