Convergence and evaluation-complexity analysis of a regularized tensor-Newton method for solving nonlinear least-squares problems
نویسندگان
چکیده
منابع مشابه
Newton-Krylov Type Algorithm for Solving Nonlinear Least Squares Problems
The minimization of a quadratic function within an ellipsoidal trust region is an important subproblem for many nonlinear programming algorithms. When the number of variables is large, one of the most widely used strategies is to project the original problem into a small dimensional subspace. In this paper, we introduce an algorithm for solving nonlinear least squares problems. This algorithm i...
متن کاملGlobal Convergence of a New Hybrid Gauss--Newton Structured BFGS Method for Nonlinear Least Squares Problems
In this paper, we propose a hybrid Gauss-Newton structured BFGS method with a new update formula and a new switch criterion for the iterative matrix to solve nonlinear least squares problems. We approximate the second term in the Hessian by a positive definite BFGS matrix. Under suitable conditions, global convergence of the proposed method with a backtracking line search is established. Moreov...
متن کاملA Fast Algorithm for Solving Regularized Total Least Squares Problems
The total least squares (TLS) method is a successful approach for linear problems if both the system matrix and the right hand side are contaminated by some noise. For ill-posed TLS problems Renaut and Guo [SIAM J. Matrix Anal. Appl., 26 (2005), pp. 457 476] suggested an iterative method which is based on a sequence of linear eigenvalue problems. Here we analyze this method carefully, and we ac...
متن کاملA convergence proof of the split Bregman method for regularized least-squares problems
The split Bregman (SB) method [14] is a fast splitting-based algorithm that solves image reconstruction problems with general l1, e.g., total-variation (TV) and compressed sensing (CS), regularizations by introducing a single variable split to decouple the data-fitting term and the regularization term, yielding simple subproblems that are separable (or partially separable) and easy to minimize....
متن کاملSome Convergence Results on the Regularized Alternating Least-Squares Method for Tensor Decomposition
We study the convergence of the Regularized Alternating Least-Squares algorithm for tensor decompositions. As a main result, we have shown that given the existence of critical points of the Alternating Least-Squares method, the limit points of the converging subsequences of the RALS are the critical points of the least squares cost functional. Some numerical examples indicate a faster convergen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Optimization and Applications
سال: 2019
ISSN: 0926-6003,1573-2894
DOI: 10.1007/s10589-019-00064-2