Controlled nanoparticle release from stable magnetic microbubble oscillations
نویسندگان
چکیده
منابع مشابه
Controlled release of 5-fluorouracil and progesterone from magnetic nanoaggregates
BACKGROUND The potential use of magnetic nanoparticles in biomedical applications has witnessed an exponential growth in recent years. METHODS In this study, we used nanoaggregates of magnetic nanoparticles as carriers for controlled drug delivery. The nanoaggregates are formed due to the presence of the block copolymer of polyethylene oxide-polypropylene oxide (Pluronic F-68) and beta-cyclod...
متن کاملUltrasound and microbubble induced release from intracellular compartments
BACKGROUND Ultrasound and microbubbles (USMB) have been shown to enhance the intracellular uptake of molecules, generally thought to occur as a result of sonoporation. The underlying mechanism associated with USMB-enhanced intracellular uptake such as membrane disruption and endocytosis may also be associated with USMB-induced release of cellular materials to the extracellular milieu. This stud...
متن کاملNitrate Removal from Aqueous Solutions by Magnetic Nanoparticle
Introduction: Due to causing methemoglobinemia, different cancers, and teratogen effects in human nitrate contamination of water resources has become a critical environmental problem Therefore, the aim of this work was to determine the optimum condition of nitrate sorption onto magnetic nanoparticle. Materials and Methods: The removal of nitrate from aqueous solutions by magnetic nanoparticles...
متن کاملThermally Switched Release from Nanoparticle Colloidosomes
Nanoparticle colloidosomes, whose release can be switched on and off in response to a temperature change, are fabricated. Unlike in other systems, the switchable release does not require the colloidosome shell to deform; it instead occurs due to the adsorption or desorption of a block copolymer, dissolved in the core, at the inner surface of the colloidosome shell, concomitantly blocking or unb...
متن کاملControlled release of bioactive PDGF-AA from a hydrogel/nanoparticle composite.
UNLABELLED Polymer excipients, such as low molar mass poly(ethylene glycol) (PEG), have shown contradictory effects on protein stability when co-encapsulated in polymeric nanoparticles. To gain further insight into these effects, platelet-derived growth factor (PDGF-AA) was encapsulated in polymeric nanoparticles with vs. without PEG. PDGF-AA is a particularly compelling protein, as it has been...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: NPG Asia Materials
سال: 2016
ISSN: 1884-4049,1884-4057
DOI: 10.1038/am.2016.37