Controllability of the Korteweg–de Vries equation from the right Dirichlet boundary condition
نویسندگان
چکیده
منابع مشابه
Controllability of the Korteweg-de Vries equation from the right Dirichlet boundary condition
In this paper, we consider the controllability of the Korteweg-de Vries equation in a bounded interval when the control operates via the right Dirichlet boundary condition, while the left Dirichlet and the right Neumann boundary conditions are kept to zero. We prove that the linearized equation is controllable if and only if the length of the spatial domain does not belong to some countable cri...
متن کاملthe effect of traffic density on the accident externality from driving the case study of tehran
در این پژوهش به بررسی اثر افزایش ترافیک بر روی تعداد تصادفات پرداخته شده است. به این منظور 30 تقاطع در شهر تهران بطور تصادفی انتخاب گردید و تعداد تصادفات ماهیانه در این تقاطعات در طول سالهای 89-90 از سازمان کنترل ترافیک شهر تهران استخراج گردید و با استفاده از مدل داده های تابلویی و نرم افزار eviews مدل خطی و درجه دوم تخمین زده شد و در نهایت این نتیجه حاصل شد که تقاطعات پر ترافیک تر تعداد تصادفا...
15 صفحه اولBoundary Controllability of the Korteweg-de Vries Equation on a Bounded Domain
This paper is devoted to study boundary controllability of the Korteweg-de Vries equation posed on a finite interval, in which, because of the third-order character of the equation, three boundary conditions are required to secure the well-posedness of the system. We consider the cases where one, two, or all three of those boundary data are employed as boundary control inputs. The system is fir...
متن کاملNeumann Boundary Controllability of the Korteweg-de Vries Equation on a Bounded Domain
In this paper we study boundary controllability of the Korteweg-de Vries (KdV) equation posed on a finite domain (0, L) with the Neumann boundary conditions: (0.1) ut + ux + uux + uxxx = 0 in (0, L)× (0, T ), uxx(0, t) = 0, ux(L, t) = h(t), uxx(L, t) = 0 in (0, T ), u(x, 0) = u0(x) in (0, L). We show that the associated linearized system (0.2) ut + (1 + β)ux + uxxx = 0 in (0, L)× (0, T ),...
متن کاملExact Boundary Controllability for the Linear Korteweg-de Vries Equation - a Numerical Study
The exact boundary controllability of linear and nonlinear Korteweg-de Vries equation on bounded domains was established in [15] by means of Hilbert Uniqueness Method. The aim of these notes is to illustrate this approach by numerical simulations. 256 ESAIM: Proc., Vol. 4, 1998, 255-267
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Systems & Control Letters
سال: 2010
ISSN: 0167-6911
DOI: 10.1016/j.sysconle.2010.05.001