Controllability of nonlinear neutral fractional impulsive differential inclusions in Banach space

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controllability of Impulsive Neutral Functional Differential Inclusions in Banach Spaces

and Applied Analysis 3 (A 1 ) The linear operatorW: L(J, U) → X defined by

متن کامل

Impulsive neutral functional differential inclusions in Banach spaces

In this paper, we first present an impulsive version of Filippov’s Theorem for first-order neutral functional differential inclusions of the form, d dt [y(t)− g(t, yt)] ∈ F (t, yt), a.e. t ∈ J\{t1, . . . , tm}, y(t+k )− y(tk ) = Ik(y(tk )), k = 1, . . . , m, y(t) = φ(t), t ∈ [−r, 0], where J = [0, b], F is a set-valued map and g is a single-valued function. The functions Ik characterize the jum...

متن کامل

Approximate Controllability of Impulsive Fractional Partial Neutral Quasilinear Functional Differential Inclusions with Infinite Delay in Hilbert Spaces

In this paper, we consider the controllability problems for a class of impulsive fractional partial neutral quasilinear functional differential inclusions with infinite delay and (α, x)-resolvent family. In particular, a set of sufficient conditions are derived for the approximate controllability of nonlinear impulsive fractional dynamical systems by assuming the associated linear system is app...

متن کامل

Controllability of Impulsive Fractional Evolution Integrodifferential Equations in Banach Spaces

According to fractional calculus theory and Banach’s fixed point theorem, we establish the sufficient conditions for the controllability of impulsive fractional evolution integrodifferential equations in Banach spaces. An example is provided to illustrate the theory.

متن کامل

Impulsive Fractional Differential Equations in Banach Spaces

This paper is devoted to study the existence of solutions for a class of initial value problems for impulsive fractional differential equations involving the Caputo fractional derivative in a Banach space. The arguments are based upon Mönch’s fixed point theorem and the technique of measures of noncompactness.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Difference Equations

سال: 2014

ISSN: 1687-1847

DOI: 10.1186/1687-1847-2014-234