Controllability of nonlinear integral equations of Chandrasekhar type

نویسندگان

چکیده

Abstract In this paper, we study the controllability of two problems involving same Chandrasekhar-type integral equation, but under different kinds controls. A viability condition is imposed as well. We provide existence results continuous trajectories coupled to Then, in non-viable case, investigate optimal estimates be taken view solutions for both problems. The last part paper deals with application previous classical Chandrasekhar first showing a viable solution, then providing also uniqueness and approximability. Two examples governed by equation are given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types

بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی ‎‏بیان شد‎‎‏ه اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...

15 صفحه اول

ANALYTICAL-NUMERICAL SOLUTION FOR NONLINEAR INTEGRAL EQUATIONS OF HAMMERSTEIN TYPE

Using the mean-value theorem for integrals we tried to solved the nonlinear integral equations of Hammerstein type . The mean approach is to obtain an initial guess with unknown coefficients for unknown function y(x). The procedure of this method is so fast and don't need high cpu and complicated programming. The advantages of this method are that we can applied for those integral equations whi...

متن کامل

analytical-numerical solution for nonlinear integral equations of hammerstein type

using the mean-value theorem for integrals we tried to solved the nonlinear integral equations of hammerstein type . the mean approach is to obtain an initial guess with unknown coefficients for unknown function y(x). the procedure of this method is so fast and don't need high cpu and complicated programming. the advantages of this method are that we can applied for those integral equation...

متن کامل

A Low Memory Solver for Integral Equations of Chandrasekhar Type in the Radiative Transfer Problems

The problems of radiative transfer give rise to interesting integral equations that must be faced with efficient numerical solver. Very often the integral equations are discretized to large-scale nonlinear equations and solved by Newton’s-like methods. Generally, these kind of methods require the computation and storage of the Jacobian matrix or its approximation. In this paper, we present a ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Fixed Point Theory and Applications

سال: 2022

ISSN: ['1661-7746', '1661-7738']

DOI: https://doi.org/10.1007/s11784-022-00974-5