منابع مشابه
Bounded Parameter Markov Decision Processes Bounded Parameter Markov Decision Processes
In this paper, we introduce the notion of a bounded parameter Markov decision process as a generalization of the traditional exact MDP. A bounded parameter MDP is a set of exact MDPs speciied by giving upper and lower bounds on transition probabilities and rewards (all the MDPs in the set share the same state and action space). Bounded parameter MDPs can be used to represent variation or uncert...
متن کاملLearning Qualitative Markov Decision Processes Learning Qualitative Markov Decision Processes
To navigate in natural environments, a robot must decide the best action to take according to its current situation and goal, a problem that can be represented as a Markov Decision Process (MDP). In general, it is assumed that a reasonable state representation and transition model can be provided by the user to the system. When dealing with complex domains, however, it is not always easy or pos...
متن کاملAccelerated decomposition techniques for large discounted Markov decision processes
Many hierarchical techniques to solve large Markov decision processes (MDPs) are based on the partition of the state space into strongly connected components (SCCs) that can be classified into some levels. In each level, smaller problems named restricted MDPs are solved, and then these partial solutions are combined to obtain the global solution. In this paper, we first propose a novel algorith...
متن کاملDecision Processes in Agent-Based Automated Contracting
The Magnet system meets many of the challenges of modeling decision making for customer agents in automated contract negotiation. B usiness-to-business e-commerce is expanding rapidly, letting manufacturers both broaden their customer base and increase their pool of potential suppliers. However, negotiating supplier contracts for the multiple components that often make up a single product is a ...
متن کاملSemi-markov Decision Processes
Considered are infinite horizon semi-Markov decision processes (SMDPs) with finite state and action spaces. Total expected discounted reward and long-run average expected reward optimality criteria are reviewed. Solution methodology for each criterion is given, constraints and variance sensitivity are also discussed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Royal Statistical Society. Series A (General)
سال: 1978
ISSN: 0035-9238
DOI: 10.2307/2344822