Continuum Modeling of Secondary Rheology in Dense Granular Materials
نویسندگان
چکیده
منابع مشابه
Continuum modeling of secondary rheology in dense granular materials.
Recent dense granular flow experiments have shown that shear deformation in one region of a granular medium fluidizes its entirety, including regions far from the sheared zone, effectively erasing the yield condition everywhere. This enables slow creep deformation to occur when an external force is applied to a probe in the nominally static regions of the material. The apparent change in rheolo...
متن کاملRheology and contact lifetimes in dense granular flows.
We study the rheology and distribution of interparticle contact lifetimes for gravity-driven, dense granular flows of noncohesive particles down an inclined plane using large-scale, three dimensional, granular dynamics simulations. Rather than observing a large number of long-lived contacts as might be expected for dense flows, brief binary collisions predominate. In the hard-particle limit, th...
متن کاملDense granular flow rheology in turbulent bedload transport
The local granular rheology is investigated numerically in turbulent bedload transport. Considering spherical particles, steady uniform configurations are simulated using a coupled fluid-discrete-element model. The stress tensor is computed as a function of the depth for a series of simulations varying the Shields number, the specific density and the particle diameter. The results are analyzed ...
متن کاملTrajectory entanglement in dense granular materials
The particle-scale dynamics of granular materials have commonly been characterized by the self-diffusion coefficient D. However, this measure discards the collective and topological information known to be an important characteristic of particle trajectories in dense systems. Direct measurement of the entanglement of particle space–time trajectories can be obtained via the topological braid ent...
متن کاملRheology of granular materials: dynamics in a stress landscape.
We present a framework for analysing the rheology of dense driven granular materials, based on a recent proposal of a stress-based ensemble. In this ensemble, fluctuations in a granular system near jamming are controlled by a temperature-like parameter, the angoricity, which is conjugate to the stress of the system. In this paper, we develop a model for slowly driven granular materials based on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2014
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.113.178001