Continuous Tracking of Motion Induced Position Shifts
نویسندگان
چکیده
منابع مشابه
Motion-induced position shifts occur after motion integration
Low-level motion processing in the primate visual system involves two stages. The first stage (in V1) contains specialised motion sensors which respond to local retinal motion, and the second stage (in MT) pools local signals to encode rigid surface motion. Recent psychophysical research shows that motion signals influence the perceived position of an object (motion-induced position shift, MIPS...
متن کاملTemporal dependence of local motion induced shifts in perceived position
It has been shown that a moving visual pattern can influence the perceived position of outlying, briefly flashed objects. Using a rotating bar as an inducing stimulus we observed a shift, in the direction of motion, of the perceived position of small bars flashed together on either side of the moving bar. The greatest shift occurred when the 13 ms flashes were presented 60 ms before the rotatin...
متن کاملMotion-Induced Position Shifts Activate Early Visual Cortex
The ability to correctly determine the position of objects in space is a fundamental task of the visual system. The perceived position of briefly presented static objects can be influenced by nearby moving contours, as demonstrated by various illusions collectively known as motion-induced position shifts. Here we use a stimulus that produces a particularly strong effect of motion on perceived p...
متن کاملMotion-induced position shifts are influenced by global motion, but dominated by component motion
Object motion and position have long been thought to involve largely independent visual computations. However, the motion-induced position shift (Eagleman & Sejnowski, 2007) shows that the perceived position of a briefly presented static object can be influenced by nearby moving contours. Here we combine a particularly strong example of this illusion with a bistable global motion stimulus to co...
متن کاملSecond-order motion shifts perceived position
Many studies have documented that first-order motion influences perceived position. Here, we show that second-order (contrast defined) motion influences the perceived positions of stationary objects as well. We used a Gabor pattern as our second-order stimulus, which consisted of a drifting sinusoidal contrast modulation of a dynamic random-dot background; this second-order carrier was envelope...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Vision
سال: 2019
ISSN: 1534-7362
DOI: 10.1167/19.8.92