Contact Dehn surgery, symplectic fillings, and Property P for knots

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Dehn Surgery on Knots

Let K be a knot with a closed tubular neighbourhood N(K) in a connected orientable closed 3-manifold W , such that the exterior of K, M = W − intN(K), is irreducible. We consider the problem of which Dehn surgeries on K, or equivalently, which Dehn fillings on M , can produce 3-manifolds with finite fundamental group. For convenience, a surgery is called a G-surgery if the resultant 3-manifold ...

متن کامل

Tight Contact Structures with No Symplectic Fillings

We exhibit tight contact structures on 3-manifolds that do not admit any symplectic fillings.

متن کامل

Exceptional Dehn surgery on large arborescent knots

A Dehn surgery on a knot K in S is exceptional if it produces a reducible, toroidal or Seifert fibred manifold. It is known that a large arborescent knot admits no such surgery unless it is a type II arborescent knot. The main theorem of this paper shows that up to isotopy there are exactly three large arborescent knots admitting exceptional surgery, each of which admits exactly one exceptional...

متن کامل

Dehn Surgery on Knots in 3-manifolds

It has been known for over 30 years that every closed connected orientable 3manifold is obtained by surgery on a link in S [8]. However, a classification of such 3-manifolds in terms of this surgery construction has remained elusive. This is due primarily to the lack of uniqueness of the surgery description. In [5], Kirby gave us a calculus of surgery diagrams. However, the lack of a ‘canonical...

متن کامل

Reducible And Finite Dehn Fillings

We show that the distance between a finite filling slope and a reducible filling slope on the boundary of a hyperbolic knot manifold is at most one. Let M be a knot manifold, i.e. a connected, compact, orientable 3-manifold whose boundary is a torus. A knot manifold is said to be hyperbolic if its interior admits a complete hyperbolic metric of finite volume. Let M(α) denote the manifold obtain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Expositiones Mathematicae

سال: 2006

ISSN: 0723-0869

DOI: 10.1016/j.exmath.2005.11.002