Constructing one-parameter families of elliptic curves with moderate rank

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructing Families of Pairing-Friendly Elliptic Curves

We present a general method for constructing families of elliptic curves with prescribed embedding degree and prime order. We demonstrate this method by constructing curves of embedding degree k = 10, a value which has not previously appeared in the literature, and we show that our method applies to existing constructions for k = 3, 4, 6, and 12. We give evidence that our method is unlikely to ...

متن کامل

Rank-one Drinfeld Modules on Elliptic Curves

The sgn-normalized rank-one Drinfeld modules 4> associated with all elliptic curves E over ¥q for 4 < q < 13 are computed in explicit form. (Such 4> for q < 4 were computed previously.) These computations verify a conjecture of Dormán on the norm of j{) = aq+l and also suggest some interesting new properties of . We prove Dorman's conjecture in the ramified case. We also prove the formula...

متن کامل

On the rank of certain parametrized elliptic curves

In this paper the family of elliptic curves over Q given by the equation Ep :Y2 = (X - p)3 + X3 + (X + p)3 where p is a prime number, is studied. Itis shown that the maximal rank of the elliptic curves is at most 3 and someconditions under which we have rank(Ep(Q)) = 0 or rank(Ep(Q)) = 1 orrank(Ep(Q))≥2 are given.

متن کامل

Elliptic Curves, Rank in Families and Random Matrices

This survey paper contains two parts. The first one is a written version of a lecture given at the “Random Matrix Theory and L-functions” workshop organized at the Newton Institute in July 2004. This was meant as a very concrete and down to earth introduction to elliptic curves with some description of how random matrices become a tool for the (conjectural) understanding of the rank of MordellW...

متن کامل

Constructing Supersingular Elliptic Curves

We give an algorithm that constructs, on input of a prime power q and an integer t, a supersingular elliptic curve over Fq with trace of Frobenius t in case such a curve exists. If GRH holds true, the expected run time of our algorithm is e O((log q)). We illustrate the algorithm by showing how to construct supersingular curves of prime order. Such curves can readily be used for pairing based c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2007

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2006.07.002