Constraint optimization and SU(N) quantum control landscapes

نویسندگان

چکیده

We develop the embedded gradient vector field method, introduced in [8] and [9], for case of special unitary group $\mathcal{SU}(N)$ regarded as a constraint submanifold $\mathcal{U}(N)$. The optimization problem associated to trace fidelity cost function defined on that appears context quantum control landscapes is completely solved using method. prove $N\geq 5$, landscape not $\mathcal{SU}(N)$-trap free, there are always kinematic local extrema global extrema.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constraint optimization and landscapes

We describe an effective landscape introduced in [1] for the analysis of Constraint Satisfaction problems, such as Sphere Packing, K-SAT and Graph Coloring. This geometric construction reexpresses these problems in the more familiar terms of optimisation in rugged energy landscapes. In particular, it allows one to understand the puzzling fact that unsophisticated programs are successful well be...

متن کامل

Quantum adiabatic optimization and combinatorial landscapes.

In this paper we analyze the performance of the Quantum Adiabatic Evolution algorithm on a variant of the satisfiability problem for an ensemble of random graphs parametrized by the ratio of clauses to variables, gamma=M/N . We introduce a set of macroscopic parameters (landscapes) and put forward an ansatz of universality for random bit flips. We then formulate the problem of finding the small...

متن کامل

Constraint optimisation and landscapes .

We describe an effective landscape introduced in [1] for the analysis of Constraint Satisfaction problems, such as Sphere Packing, K-SAT and Graph Coloring. This geometric construction reexpresses these problems in the more familiar terms of optimisation in rugged energy landscapes. In particular, it allows one to understand the puzzling fact that unsophisticated programs are successful well be...

متن کامل

Computational complexity of quantum optimal control landscapes

We study the Hamiltonian-independent contribution to the complexity of quantum optimal control problems. The optimization of controls that steer quantum systems to desired objectives can itself be considered a classical dynamical system that executes an analog computation. The systemindependent component of the equations of motion of this dynamical system can be integrated analytically for vari...

متن کامل

Optimization search effort over the control landscapes for open quantum systems with Kraus-map evolution

A quantum control landscape is defined as the expectation value of a target observable Θ as a function of the control variables. In this work control landscapes for open quantum systems governed by Kraus map evolution are analyzed. Kraus maps are used as the controls transforming an initial density matrix ρi into a final density matrix to maximize the expectation value of the observable Θ. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A

سال: 2022

ISSN: ['1751-8113', '1751-8121']

DOI: https://doi.org/10.1088/1751-8121/ac5189