Constrained Multi-Objective Optimization for Double-Sided Tubular Machine With Hybrid Segmented PM

نویسندگان

چکیده

Double-sided tubular machines (DSTM) have greatly improved space utilization and power density, are widely used in tidal generation high-power electric drives, while the thrust force ripple is also significant. To get minimum cogging with maximum force, hybrid segmented PM array topology introduced to DSTM as research object for multi-objective optimization. Due constraints among parameters be optimized, this paper proposes a new constrained multi-parameter optimization method. In method, optimal Latin hypercube(OLH) put forward solve parameter sampling problem. RReliefF distinguish importance of divide them into three layers: strong, medium weak, surrogate models established hierarchically simplify complexity. addition, an Gaussian process regression(GPR) algorithm proposed improve accuracy strong significance parameters. The results show that average increased by 4.7%, reduced 28%, total harmonic distortion rate voltage 30.5% without loss efficiency, which significantly improves performance machine, verifies effectiveness suitable

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

solution of security constrained unit commitment problem by a new multi-objective optimization method

چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...

A Novel Hybrid Algorithm for Constrained Multi-objective Optimization

A new hybrid Optimization Algorithm is proposed to solve Constrained Multi-objective Optimization Problems (CMOPs). The algorithm is named BBO/DE which combines the exploitation ability of Biogeography-based Optimization (BBO) and the exploration ability of Differential Evolution (DE). Meanwhile distance measures and adaptive penalty functions are adopted to handle the constraints so that optim...

متن کامل

Multi-objective Differential Evolution with Helper Functions for Constrained Optimization

Solving constrained optimization problems by multi-objective evolutionary algorithms has scored tremendous achievements in the last decade. Standard multi-objective schemes usually aim at minimizing the objective function and also the degree of constraint violation simultaneously. This paper proposes a new multi-objective method for solving constrained optimization problems. The new method keep...

متن کامل

A Bi-objective Constrained Optimization Methodology Using a Hybrid Multi-Objective and Penalty Function Approach

Single objective evolutionary constrained optimization has been widely searched and researched by plethora of researchers in last two decades. On the other hand, multi-objective constraint handling using evolutionary algorithms has not been actively proposed. However, real-world multi-objective optimization problems consist of one or many non-linear and non-convex constraints. In the present wo...

متن کامل

Constrained Multi-Objective Optimization Using Differential Evolution

Most real-world optimization problems include multiple objective functions and several constraints. The Differential Evolution algorithm was initially developed for unconstrained single-objective problems and was shown to be a fast, simple algorithm. In order to utilize these advantages in real-world problems it was adapted for multi-objective optimization recently. In this work a multi-objecti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2023

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2023.3274206