Constrained Dual Graph Regularized Orthogonal Nonnegative Matrix Tri-Factorization for Co-Clustering

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orthogonal Nonnegative Matrix Tri-factorization for Semi-supervised Document Co-clustering

Semi-supervised clustering is often viewed as using labeled data to aid the clustering process. However, existing algorithms fail to consider dual constraints between data points (e.g. documents) and features (e.g. words). To address this problem, in this paper, we propose a novel semi-supervised document co-clustering model OSS-NMF via orthogonal nonnegative matrix tri-factorization. Our model...

متن کامل

EquiNMF: Graph Regularized Multiview Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) methods have proved to be powerful across a wide range of real-world clustering applications. Integrating multiple types of measurements for the same objects/subjects allows us to gain a deeper understanding of the data and refine the clustering. We have developed a novel Graph-reguarized multiview NMF-based method for data integration called EquiNMF. The ...

متن کامل

Symmetric Nonnegative Matrix Factorization for Graph Clustering

Nonnegative matrix factorization (NMF) provides a lower rank approximation of a nonnegative matrix, and has been successfully used as a clustering method. In this paper, we offer some conceptual understanding for the capabilities and shortcomings of NMF as a clustering method. Then, we propose Symmetric NMF (SymNMF) as a general framework for graph clustering, which inherits the advantages of N...

متن کامل

Dual-graph regularized concept factorization for clustering

In past decades, tremendous growths in the amount of text documents and images have become omnipresent, and it is very important to group them into clusters upon desired. Recently, matrix factorization based techniques, such as Non-negative Matrix Factorization (NMF) and Concept Factorization (CF), have yielded impressive results for clustering. However, both of them effectively see only the gl...

متن کامل

A Convergent Algorithm for Bi-orthogonal Nonnegative Matrix Tri-Factorization

Abstract. We extend our previous work on a convergent algorithm for uni-orthogonal nonnegative matrix factorization (UNMF) to the case where the data matrix is decomposed into three factors with two of them are constrained orthogonally and the third one is used to absorb the approximation error. Due to the way the factorization is performed, we name it as bi-orthogonal nonnegative matrix tri-fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2019

ISSN: 1024-123X,1563-5147

DOI: 10.1155/2019/7565640